t5nyllama / finetuning_tinyllama.py
vietlethe's picture
first commit
6dc4993
raw
history blame
5.87 kB
from unsloth import FastLanguageModel
import torch
# Define model parameters
max_seq_length = 4096 # Choose any! We auto support RoPE Scaling internally!
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
# Load the model and tokenizer
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="unsloth/tinyllama-chat-bnb-4bit", # "unsloth/tinyllama" for 16bit loading
max_seq_length=max_seq_length,
dtype=dtype,
load_in_4bit=load_in_4bit,
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
)
# Apply PEFT (Parameter-Efficient Fine-Tuning)
model = FastLanguageModel.get_peft_model(
model,
r=32, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
target_modules=["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",],
lora_alpha=32,
lora_dropout=0, # Currently only supports dropout = 0
bias="none", # Currently only supports bias = "none"
use_gradient_checkpointing=False, # @@@ IF YOU GET OUT OF MEMORY - set to True @@@
random_state=3407,
use_rslora=False, # We support rank stabilized LoRA
loftq_config=None, # And LoftQ
)
# Data preparation
import pandas as pd
from sklearn.model_selection import train_test_split
import datasets
# Load the dataset
train = datasets.load_dataset("grammarly/coedit", split="train").to_pandas()
val = datasets.load_dataset("grammarly/coedit", split="validation").to_pandas()
# Data cleaning and preparation
data = pd.concat([train, val])
data[['instruction', 'input']] = data['src'].str.split(': ', n=1, expand=True)
data = data.rename(columns={"tgt": "output"})
data = data.drop(columns=["_id", "src"])
# Stratify based on task for balanced splits
stratify_col = data['task']
# Split the data into train and test sets
train_df, test_df = train_test_split(
data,
test_size=0.2,
random_state=42,
stratify=stratify_col
)
def formatting_prompts_func(examples, tokenizer):
"""
Formats the examples into the desired chat format for training.
Args:
examples: A dictionary of examples from the dataset.
tokenizer: The tokenizer used for processing text.
Returns:
A dictionary containing the formatted text for each example.
"""
instructions = examples["instruction"]
inputs = examples["input"]
outputs = examples["output"]
texts = []
for instruction, input, output in zip(instructions, inputs, outputs):
message = [
{"role": "user", "content": instruction + ": " + input},
{"role": "assistant", "content": output},
]
text = tokenizer.apply_chat_template(
message, tokenize=False, add_generation_prompt=False)
texts.append(text)
return {"text": texts, }
# Create datasets from pandas DataFrames
train_ds = datasets.Dataset.from_pandas(train_df)
test_ds = datasets.Dataset.from_pandas(test_df)
# Map the formatting function to the datasets for chat format conversion
train_ds = train_ds.map(formatting_prompts_func, fn_kwargs={"tokenizer": tokenizer}, batched=True,)
test_ds = test_ds.map(formatting_prompts_func, fn_kwargs={"tokenizer": tokenizer}, batched=True,)
print(train_ds[0]['text'])
# Fine-tuning with trl
from trl import SFTTrainer
from transformers import TrainingArguments
# Define training arguments
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=train_ds,
eval_dataset=test_ds,
dataset_text_field="text",
max_seq_length=max_seq_length,
dataset_num_proc=10,
packing=False, # Can make training 5x faster for short sequences.
args=TrainingArguments(
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
gradient_accumulation_steps=4,
warmup_steps=5,
num_train_epochs=2,
learning_rate=2e-4,
fp16=not torch.cuda.is_bf16_supported(),
bf16=torch.cuda.is_bf16_supported(),
logging_steps=1,
save_steps=100,
save_total_limit=4, # Limit the total number of checkpoints
evaluation_strategy="steps",
eval_steps=100,
optim="adamw_8bit",
weight_decay=0.01,
lr_scheduler_type="linear",
seed=3407,
output_dir="outputs",
load_best_model_at_end=True,
save_strategy="steps",
),
)
# Print GPU information
gpu_stats = torch.cuda.get_device_properties(0)
start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)
print(f"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.")
print(f"{start_gpu_memory} GB of memory reserved.")
# Train the model
trainer_stats = trainer.train()
# Print memory usage statistics
used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)
used_memory_for_lora = round(used_memory - start_gpu_memory, 3)
used_percentage = round(used_memory / max_memory * 100, 3)
lora_percentage = round(used_memory_for_lora / max_memory * 100, 3)
print(f"{trainer_stats.metrics['train_runtime']} seconds used for training.")
print(f"{round(trainer_stats.metrics['train_runtime'] / 60, 2)} minutes used for training.")
print(f"Peak reserved memory = {used_memory} GB.")
print(f"Peak reserved memory for training = {used_memory_for_lora} GB.")
print(f"Peak reserved memory % of max memory = {used_percentage} %.")
print(f"Peak reserved memory for training % of max memory = {lora_percentage} %.")
# Save the trained model and tokenizer
print("Saving model to local")
model.save_pretrained("coedit-tinyllama-chat-bnb-4bit") # Local saving
tokenizer.save_pretrained("coedit-tinyllama-chat-bnb-4bit")
# Evaluate the model (Optional)
#trainer.evaluate()