import streamlit as st from datasets import load_dataset from haystack import Pipeline from haystack.components.readers import ExtractiveReader from haystack.components.retrievers.in_memory import InMemoryBM25Retriever from haystack.document_stores.in_memory import InMemoryDocumentStore from utils import get_unique_docs # Load the dataset @st.cache_data(show_spinner=False) def load_documents(): """ Load the documents from the dataset considering only unique documents. Returns: - documents: list of dictionaries with the documents. """ unique_docs = set() dataset_name = "PedroCJardim/QASports" dataset_split = "basketball" st.caption(f'Fetching "{dataset_name}" dataset') # build the dataset dataset = load_dataset(dataset_name, dataset_split) docs_validation = get_unique_docs(dataset["validation"], unique_docs) docs_train = get_unique_docs(dataset["train"], unique_docs) docs_test = get_unique_docs(dataset["test"], unique_docs) documents = docs_validation + docs_train + docs_test return documents @st.cache_resource(show_spinner=False) def get_document_store(documents): """ Index the files in the document store. Args: - files: list of dictionaries with the documents. """ # Create in memory database st.caption(f"Building the Document Store") document_store = InMemoryDocumentStore() document_store.write_documents(documents=documents) return document_store @st.cache_resource(show_spinner=False) def get_question_pipeline(_doc_store): """ Create the pipeline with the retriever and reader components. Args: - doc_store: instance of the document store. Returns: - pipe: instance of the pipeline. """ st.caption(f"Building the Question Answering pipeline") # Create the retriever and reader retriever = InMemoryBM25Retriever(document_store=_doc_store) reader = ExtractiveReader(model="deepset/roberta-base-squad2") reader.warm_up() # Create the pipeline pipe = Pipeline() pipe.add_component(instance=retriever, name="retriever") pipe.add_component(instance=reader, name="reader") pipe.connect("retriever.documents", "reader.documents") return pipe def search(pipeline, question: str): """ Search for the answer to a question in the documents. Args: - pipeline: instance of the pipeline. - question: string with the question. Returns: - answer: dictionary with the answer. """ # Get the answers top_k = 3 answer = pipeline.run( data={ "retriever": {"query": question, "top_k": 10}, "reader": {"query": question, "top_k": top_k}, } ) max_k = min(top_k, len(answer["reader"]["answers"])) return answer["reader"]["answers"][0:max_k] # Streamlit interface with st.status( "Downloading dataset...", expanded=st.session_state.get("expanded", True) ) as status: documents = load_documents() status.update(label="Indexing documents...") doc_store = get_document_store(documents) status.update(label="Creating pipeline...") pipe = get_question_pipeline(doc_store) status.update( label="Download and indexing complete!", state="complete", expanded=False ) st.session_state["expanded"] = False st.subheader("🔎 QASports: Basketball", divider="rainbow") st.caption( """This website presents a collection of documents from the dataset named "QASports", the first large sports question answering dataset for open questions. QASports contains real data of players, teams and matches from the sports soccer, basketball and American football. It counts over 1.5 million questions and answers about 54k preprocessed, cleaned and organized documents from Wikipedia-like sources.""" ) if user_query := st.text_input( label="Ask a question about Basketball! 🏀", placeholder="How many field goals did Kobe Bryant score?", ): # Get the answers with st.spinner("Waiting"): try: answer = search(pipe, user_query) for idx, ans in enumerate(answer): st.info( f""" Answer {idx+1}: "{ans.data}" | Score: {ans.score:0.4f} Document: "{ans.document.meta["title"]}" URL: {ans.document.meta["url"]} """ ) with st.expander("See details", expanded=False): st.write(ans) st.divider() except Exception as e: st.error("We do not have an answer for your question")