import os from huggingface_hub import InferenceClient import gradio as gr import nltk import torch from transformers import DistilBertTokenizer, DistilBertModel from duckduckgo_search import ddg from langchain.chains import RetrievalQA from langchain.document_loaders import UnstructuredFileLoader from langchain.embeddings import HuggingFaceBgeEmbeddings from langchain.vectorstores import Chroma from transformers import DistilBertConfig, DistilBertModel # Initialize tokenizer and model for embedding tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english") embedding_model_name = "distilbert/distilbert-base-uncased-finetuned-sst-2-english" DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" # Load Qwen 2 for text generation qwen_text_gen = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # Function to search the web def search_web(query): results = ddg(query) web_content = '' if results: for result in results: web_content += result['body'] return web_content # Function to initialize knowledge vector store def init_knowledge_vector_store(file): if file is None: return filepath = file.name distilbert_embedding = HuggingFaceBgeEmbeddings(model_name=embedding_model_name) loader = UnstructuredFileLoader(filepath, mode="elements") docs = loader.load() Chroma.from_documents(docs, distilbert_embedding, persist_directory="./vector_store") # Function to get knowledge vector store def get_knowledge_vector_store(): distilbert_embedding = HuggingFaceBgeEmbeddings(model_name=embedding_model_name) vector_store = Chroma(embedding_function=distilbert_embedding, persist_directory="./vector_store") return vector_store # Function to get knowledge-based answer def get_knowledge_based_answer(query, qwen_text_gen, vector_store, VECTOR_SEARCH_TOP_K, web_content): if web_content: prompt_template = f"""Answer the user's question based on the following known information. Known web search content: {web_content} """ + """ Known Content: {context} question: {question}""" else: prompt_template = """Answer the user's question based on the known information. Known Content: {context} question: {question}""" prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) knowledge_chain = RetrievalQA.from_llm( llm=qwen_text_gen, retriever=vector_store.as_retriever(search_kwargs={"k": VECTOR_SEARCH_TOP_K}), prompt=prompt ) knowledge_chain.combine_documents_chain.document_prompt = PromptTemplate( input_variables=["page_content"], template="{page_content}" ) knowledge_chain.return_source_documents = True result = knowledge_chain.invoke({"query": query}) return result['result'] # Function to clear session def clear_session(): return '', None # Function to predict def predict(input, qwen_text_gen, VECTOR_SEARCH_TOP_K, use_web, key=None, history=None): if history == None: history = [] vector_store = get_knowledge_vector_store() if use_web == 'True': web_content = search_web(query=input) if web_content is None: web_content = "" else: web_content = '' resp = get_knowledge_based_answer( query=input, qwen_text_gen=qwen_text_gen, vector_store=vector_store, VECTOR_SEARCH_TOP_K=VECTOR_SEARCH_TOP_K, web_content=web_content, ) history.append((input, resp)) return '', history, history # Gradio interface setup block = gr.Blocks() with block as demo: gr.Markdown("

Chat History

") with gr.Row(): with gr.Column(scale=1): file = gr.File(label='Please upload txt, md, docx type files', file_types=['.txt', '.md', '.docx']) get_vs = gr.Button("Generate Knowledge Base") get_vs.click(init_knowledge_vector_store, inputs=[file]) use_web = gr.Radio(["True", "False"], label="Web Search", value="False") VECTOR_SEARCH_TOP_K = gr.Slider(1, 10, value=5, step=1, label="vector search top k", interactive=True) with gr.Column(scale=4): chatbot = gr.Chatbot(label='Ming History Knowledge Question and Answer Assistant', height=600) message = gr.Textbox(label='Please enter your question') state = gr.State() with gr.Row(): clear_history = gr.Button("Clear history conversation") send = gr.Button("Send") send.click(predict, inputs=[message, qwen_text_gen, VECTOR_SEARCH_TOP_K, use_web, state], outputs=[message, chatbot, state]) clear_history.click(fn=clear_session, inputs=[], outputs=[chatbot, state], queue=False) message.submit(predict, inputs=[message, qwen_text_gen, VECTOR_SEARCH_TOP_K, use_web, state], outputs=[message, chatbot, state]) demo.queue().launch(share=False)