Update app.py
Browse files
app.py
CHANGED
@@ -14,6 +14,55 @@ from langchain.chat_models import ChatOpenAI # the LLM model we'll use (ChatGPT)
|
|
14 |
from langchain import PromptTemplate
|
15 |
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
def create_db_connection():
|
18 |
DB_FILE = "./questionset.db"
|
19 |
connection = sqlite3.connect(DB_FILE,check_same_thread=False)
|
@@ -162,53 +211,6 @@ def add_questionset(data, document_type, tag_for_questionset):
|
|
162 |
connection.commit()
|
163 |
connection.close()
|
164 |
|
165 |
-
|
166 |
-
def load_pdf_and_generate_embeddings(pdf_doc, relevant_pages):
|
167 |
-
os.environ['OPENAI_API_KEY'] = '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'
|
168 |
-
#OCR Conversion - skips conversion of pages that already contain text
|
169 |
-
pdf_doc = ocr_converter(pdf_doc)
|
170 |
-
#Load the pdf file
|
171 |
-
loader = OnlinePDFLoader(pdf_doc)
|
172 |
-
pages = loader.load_and_split()
|
173 |
-
print('pages loaded:', len(pages))
|
174 |
-
|
175 |
-
#Create an instance of OpenAIEmbeddings, which is responsible for generating embeddings for text
|
176 |
-
embeddings = OpenAIEmbeddings()
|
177 |
-
|
178 |
-
pages_to_be_loaded =[]
|
179 |
-
|
180 |
-
if relevant_pages:
|
181 |
-
page_numbers = relevant_pages.split(",")
|
182 |
-
if len(page_numbers) != 0:
|
183 |
-
for page_number in page_numbers:
|
184 |
-
if page_number.isdigit():
|
185 |
-
pageIndex = int(page_number)-1
|
186 |
-
if pageIndex >=0 and pageIndex <len(pages):
|
187 |
-
pages_to_be_loaded.append(pages[pageIndex])
|
188 |
-
|
189 |
-
#In the scenario where none of the page numbers supplied exist in the PDF, we will revert to using the entire PDF.
|
190 |
-
if len(pages_to_be_loaded) ==0:
|
191 |
-
pages_to_be_loaded = pages.copy()
|
192 |
-
|
193 |
-
|
194 |
-
#To create a vector store, we use the Chroma class, which takes the documents (pages in our case) and the embeddings instance
|
195 |
-
vectordb = Chroma.from_documents(pages_to_be_loaded, embedding=embeddings)
|
196 |
-
|
197 |
-
#Finally, we create the bot using the RetrievalQA class
|
198 |
-
global pdf_qa
|
199 |
-
|
200 |
-
prompt_template = """Use the following pieces of context to answer the question at the end. If you do not know the answer, just return N/A. If you encounter a date, return it in mm/dd/yyyy format.
|
201 |
-
|
202 |
-
{context}
|
203 |
-
|
204 |
-
Question: {question}
|
205 |
-
Return just the answer. Provide the answer in the JSON format and extract the key from the question :"""
|
206 |
-
PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
207 |
-
chain_type_kwargs = {"prompt": PROMPT}
|
208 |
-
pdf_qa = RetrievalQA.from_chain_type(llm=ChatOpenAI(temperature=0, model_name="gpt-4"),chain_type="stuff", retriever=vectordb.as_retriever(search_kwargs={"k": 5}), chain_type_kwargs=chain_type_kwargs, return_source_documents=False)
|
209 |
-
|
210 |
-
return "Ready"
|
211 |
-
|
212 |
def load_csv_and_store_questionset_into_sqlite(csv_file, document_type, tag_for_questionset):
|
213 |
print('document type is:',document_type)
|
214 |
print('tag_for_questionset is:',tag_for_questionset)
|
@@ -270,7 +272,7 @@ title = """
|
|
270 |
<h1>Chatbot for PDFs - GPT-4</h1>
|
271 |
<p style="text-align: center;">Upload a .PDF, click the "Upload PDF and generate embeddings" button, <br />
|
272 |
Wait for the Status to show Ready. You can chose to get answers to the pre-defined question set OR ask your own question <br />
|
273 |
-
The app is built on GPT-4 and leverages PromptTemplate</p>
|
274 |
</div>
|
275 |
"""
|
276 |
|
@@ -280,6 +282,7 @@ with gr.Blocks(css=css,theme=gr.themes.Monochrome()) as demo:
|
|
280 |
|
281 |
with gr.Tab("Chatbot"):
|
282 |
with gr.Column():
|
|
|
283 |
pdf_doc = gr.File(label="Load a pdf",file_types=['.pdf'],type='file')
|
284 |
relevant_pages = gr.Textbox(label="*Optional - List comma separated page numbers to load or leave this field blank to use the entire PDF")
|
285 |
|
|
|
14 |
from langchain import PromptTemplate
|
15 |
|
16 |
|
17 |
+
def load_pdf_and_generate_embeddings(pdf_doc, open_ai_key, relevant_pages):
|
18 |
+
if open_ai_key is not None:
|
19 |
+
os.environ['OPENAI_API_KEY'] = open_ai_key
|
20 |
+
#OCR Conversion - skips conversion of pages that already contain text
|
21 |
+
pdf_doc = ocr_converter(pdf_doc)
|
22 |
+
#Load the pdf file
|
23 |
+
loader = OnlinePDFLoader(pdf_doc)
|
24 |
+
pages = loader.load_and_split()
|
25 |
+
print('pages loaded:', len(pages))
|
26 |
+
|
27 |
+
#Create an instance of OpenAIEmbeddings, which is responsible for generating embeddings for text
|
28 |
+
embeddings = OpenAIEmbeddings()
|
29 |
+
|
30 |
+
pages_to_be_loaded =[]
|
31 |
+
|
32 |
+
if relevant_pages:
|
33 |
+
page_numbers = relevant_pages.split(",")
|
34 |
+
if len(page_numbers) != 0:
|
35 |
+
for page_number in page_numbers:
|
36 |
+
if page_number.isdigit():
|
37 |
+
pageIndex = int(page_number)-1
|
38 |
+
if pageIndex >=0 and pageIndex <len(pages):
|
39 |
+
pages_to_be_loaded.append(pages[pageIndex])
|
40 |
+
|
41 |
+
#In the scenario where none of the page numbers supplied exist in the PDF, we will revert to using the entire PDF.
|
42 |
+
if len(pages_to_be_loaded) ==0:
|
43 |
+
pages_to_be_loaded = pages.copy()
|
44 |
+
|
45 |
+
|
46 |
+
#To create a vector store, we use the Chroma class, which takes the documents (pages in our case) and the embeddings instance
|
47 |
+
vectordb = Chroma.from_documents(pages_to_be_loaded, embedding=embeddings)
|
48 |
+
|
49 |
+
#Finally, we create the bot using the RetrievalQA class
|
50 |
+
global pdf_qa
|
51 |
+
|
52 |
+
prompt_template = """Use the following pieces of context to answer the question at the end. If you do not know the answer, just return N/A. If you encounter a date, return it in mm/dd/yyyy format.
|
53 |
+
|
54 |
+
{context}
|
55 |
+
|
56 |
+
Question: {question}
|
57 |
+
Return just the answer. Provide the answer in the JSON format and extract the key from the question :"""
|
58 |
+
PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
59 |
+
chain_type_kwargs = {"prompt": PROMPT}
|
60 |
+
pdf_qa = RetrievalQA.from_chain_type(llm=ChatOpenAI(temperature=0, model_name="gpt-4"),chain_type="stuff", retriever=vectordb.as_retriever(search_kwargs={"k": 5}), chain_type_kwargs=chain_type_kwargs, return_source_documents=False)
|
61 |
+
|
62 |
+
return "Ready"
|
63 |
+
else:
|
64 |
+
return "Please provide an OpenAI gpt-4 API key"
|
65 |
+
|
66 |
def create_db_connection():
|
67 |
DB_FILE = "./questionset.db"
|
68 |
connection = sqlite3.connect(DB_FILE,check_same_thread=False)
|
|
|
211 |
connection.commit()
|
212 |
connection.close()
|
213 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
def load_csv_and_store_questionset_into_sqlite(csv_file, document_type, tag_for_questionset):
|
215 |
print('document type is:',document_type)
|
216 |
print('tag_for_questionset is:',tag_for_questionset)
|
|
|
272 |
<h1>Chatbot for PDFs - GPT-4</h1>
|
273 |
<p style="text-align: center;">Upload a .PDF, click the "Upload PDF and generate embeddings" button, <br />
|
274 |
Wait for the Status to show Ready. You can chose to get answers to the pre-defined question set OR ask your own question <br />
|
275 |
+
The app is built on GPT-4 and leverages the magic of PromptTemplate</p>
|
276 |
</div>
|
277 |
"""
|
278 |
|
|
|
282 |
|
283 |
with gr.Tab("Chatbot"):
|
284 |
with gr.Column():
|
285 |
+
openai_key = gr.Textbox(label="Your GPT-4 OpenAI API key", type="password")
|
286 |
pdf_doc = gr.File(label="Load a pdf",file_types=['.pdf'],type='file')
|
287 |
relevant_pages = gr.Textbox(label="*Optional - List comma separated page numbers to load or leave this field blank to use the entire PDF")
|
288 |
|