Spaces:
Runtime error
Runtime error
Delete models/denoiser/nextdit/modeling_nextdit.py with huggingface_hub
Browse files
models/denoiser/nextdit/modeling_nextdit.py
DELETED
@@ -1,571 +0,0 @@
|
|
1 |
-
|
2 |
-
import torch
|
3 |
-
import torch.nn as nn
|
4 |
-
import torch.nn.functional as F
|
5 |
-
import numpy as np
|
6 |
-
import einops
|
7 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
8 |
-
from diffusers.models.modeling_utils import ModelMixin
|
9 |
-
from typing import Any, Tuple, Optional
|
10 |
-
from flash_attn import flash_attn_varlen_func
|
11 |
-
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
12 |
-
|
13 |
-
from .layers import LLamaFeedForward, RMSNorm
|
14 |
-
|
15 |
-
# import frasch
|
16 |
-
|
17 |
-
|
18 |
-
def modulate(x, scale):
|
19 |
-
return x * (1 + scale)
|
20 |
-
|
21 |
-
class TimestepEmbedder(nn.Module):
|
22 |
-
"""
|
23 |
-
Embeds scalar timesteps into vector representations.
|
24 |
-
"""
|
25 |
-
def __init__(self, hidden_size, frequency_embedding_size=256):
|
26 |
-
super().__init__()
|
27 |
-
self.hidden_size = hidden_size
|
28 |
-
self.frequency_embedding_size = frequency_embedding_size
|
29 |
-
self.mlp = nn.Sequential(
|
30 |
-
nn.Linear(self.frequency_embedding_size, self.hidden_size),
|
31 |
-
nn.SiLU(),
|
32 |
-
nn.Linear(self.hidden_size, self.hidden_size),
|
33 |
-
)
|
34 |
-
|
35 |
-
@staticmethod
|
36 |
-
def timestep_embedding(t, dim, max_period=10000):
|
37 |
-
"""
|
38 |
-
Create sinusoidal timestep embeddings.
|
39 |
-
:param t: a 1-D Tensor of N indices, one per batch element.
|
40 |
-
:param dim: the dimension of the output.
|
41 |
-
:param max_period: controls the minimum frequency of the embeddings.
|
42 |
-
:return: an (N, D) Tensor of positional embeddings.
|
43 |
-
"""
|
44 |
-
half = dim // 2
|
45 |
-
freqs = torch.exp(
|
46 |
-
-np.log(max_period) * torch.arange(0, half, dtype=t.dtype) / half
|
47 |
-
).to(t.device)
|
48 |
-
args = t[:, :, None] * freqs[None, :]
|
49 |
-
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
50 |
-
if dim % 2:
|
51 |
-
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :, :1])], dim=-1)
|
52 |
-
return embedding
|
53 |
-
|
54 |
-
def forward(self, t):
|
55 |
-
t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
|
56 |
-
t_freq = t_freq.to(self.mlp[0].weight.dtype)
|
57 |
-
return self.mlp(t_freq)
|
58 |
-
|
59 |
-
class FinalLayer(nn.Module):
|
60 |
-
def __init__(self, hidden_size, num_patches, out_channels):
|
61 |
-
super().__init__()
|
62 |
-
self.norm_final = nn.LayerNorm(hidden_size, eps=1e-6, elementwise_affine=False)
|
63 |
-
self.linear = nn.Linear(hidden_size, num_patches * out_channels)
|
64 |
-
self.adaLN_modulation = nn.Sequential(
|
65 |
-
nn.SiLU(),
|
66 |
-
nn.Linear(min(hidden_size, 1024), hidden_size),
|
67 |
-
)
|
68 |
-
|
69 |
-
def forward(self, x, c):
|
70 |
-
scale = self.adaLN_modulation(c)
|
71 |
-
x = modulate(self.norm_final(x), scale)
|
72 |
-
x = self.linear(x)
|
73 |
-
return x
|
74 |
-
|
75 |
-
class Attention(nn.Module):
|
76 |
-
def __init__(
|
77 |
-
self,
|
78 |
-
dim,
|
79 |
-
n_heads,
|
80 |
-
n_kv_heads=None,
|
81 |
-
qk_norm=False,
|
82 |
-
y_dim=0,
|
83 |
-
base_seqlen=None,
|
84 |
-
proportional_attn=False,
|
85 |
-
attention_dropout=0.0,
|
86 |
-
max_position_embeddings=384,
|
87 |
-
):
|
88 |
-
super().__init__()
|
89 |
-
self.dim = dim
|
90 |
-
self.n_heads = n_heads
|
91 |
-
self.n_kv_heads = n_kv_heads or n_heads
|
92 |
-
self.qk_norm = qk_norm
|
93 |
-
self.y_dim = y_dim
|
94 |
-
self.base_seqlen = base_seqlen
|
95 |
-
self.proportional_attn = proportional_attn
|
96 |
-
self.attention_dropout = attention_dropout
|
97 |
-
self.max_position_embeddings = max_position_embeddings
|
98 |
-
|
99 |
-
self.head_dim = dim // n_heads
|
100 |
-
|
101 |
-
self.wq = nn.Linear(dim, n_heads * self.head_dim, bias=False)
|
102 |
-
self.wk = nn.Linear(dim, self.n_kv_heads * self.head_dim, bias=False)
|
103 |
-
self.wv = nn.Linear(dim, self.n_kv_heads * self.head_dim, bias=False)
|
104 |
-
|
105 |
-
if y_dim > 0:
|
106 |
-
self.wk_y = nn.Linear(y_dim, self.n_kv_heads * self.head_dim, bias=False)
|
107 |
-
self.wv_y = nn.Linear(y_dim, self.n_kv_heads * self.head_dim, bias=False)
|
108 |
-
self.gate = nn.Parameter(torch.zeros(n_heads))
|
109 |
-
|
110 |
-
self.wo = nn.Linear(n_heads * self.head_dim, dim, bias=False)
|
111 |
-
|
112 |
-
if qk_norm:
|
113 |
-
self.q_norm = nn.LayerNorm(self.n_heads * self.head_dim)
|
114 |
-
self.k_norm = nn.LayerNorm(self.n_kv_heads * self.head_dim)
|
115 |
-
if y_dim > 0:
|
116 |
-
self.ky_norm = nn.LayerNorm(self.n_kv_heads * self.head_dim, eps=1e-6)
|
117 |
-
else:
|
118 |
-
self.ky_norm = nn.Identity()
|
119 |
-
else:
|
120 |
-
self.q_norm = nn.Identity()
|
121 |
-
self.k_norm = nn.Identity()
|
122 |
-
self.ky_norm = nn.Identity()
|
123 |
-
|
124 |
-
|
125 |
-
@staticmethod
|
126 |
-
def apply_rotary_emb(xq, xk, freqs_cis):
|
127 |
-
# xq, xk: [batch_size, seq_len, n_heads, head_dim]
|
128 |
-
# freqs_cis: [1, seq_len, 1, head_dim]
|
129 |
-
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 2)
|
130 |
-
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 2)
|
131 |
-
|
132 |
-
xq_complex = torch.view_as_complex(xq_)
|
133 |
-
xk_complex = torch.view_as_complex(xk_)
|
134 |
-
|
135 |
-
freqs_cis = freqs_cis.unsqueeze(2)
|
136 |
-
|
137 |
-
# Apply freqs_cis
|
138 |
-
xq_out = xq_complex * freqs_cis
|
139 |
-
xk_out = xk_complex * freqs_cis
|
140 |
-
|
141 |
-
# Convert back to real numbers
|
142 |
-
xq_out = torch.view_as_real(xq_out).flatten(-2)
|
143 |
-
xk_out = torch.view_as_real(xk_out).flatten(-2)
|
144 |
-
|
145 |
-
return xq_out.type_as(xq), xk_out.type_as(xk)
|
146 |
-
|
147 |
-
# copied from huggingface modeling_llama.py
|
148 |
-
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
149 |
-
def _get_unpad_data(attention_mask):
|
150 |
-
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
151 |
-
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
152 |
-
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
153 |
-
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
154 |
-
return (
|
155 |
-
indices,
|
156 |
-
cu_seqlens,
|
157 |
-
max_seqlen_in_batch,
|
158 |
-
)
|
159 |
-
|
160 |
-
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
161 |
-
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
162 |
-
|
163 |
-
key_layer = index_first_axis(
|
164 |
-
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
165 |
-
indices_k,
|
166 |
-
)
|
167 |
-
value_layer = index_first_axis(
|
168 |
-
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
|
169 |
-
indices_k,
|
170 |
-
)
|
171 |
-
if query_length == kv_seq_len:
|
172 |
-
query_layer = index_first_axis(
|
173 |
-
query_layer.reshape(batch_size * kv_seq_len, self.n_heads, head_dim),
|
174 |
-
indices_k,
|
175 |
-
)
|
176 |
-
cu_seqlens_q = cu_seqlens_k
|
177 |
-
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
178 |
-
indices_q = indices_k
|
179 |
-
elif query_length == 1:
|
180 |
-
max_seqlen_in_batch_q = 1
|
181 |
-
cu_seqlens_q = torch.arange(
|
182 |
-
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
183 |
-
) # There is a memcpy here, that is very bad.
|
184 |
-
indices_q = cu_seqlens_q[:-1]
|
185 |
-
query_layer = query_layer.squeeze(1)
|
186 |
-
else:
|
187 |
-
# The -q_len: slice assumes left padding.
|
188 |
-
attention_mask = attention_mask[:, -query_length:]
|
189 |
-
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
190 |
-
|
191 |
-
return (
|
192 |
-
query_layer,
|
193 |
-
key_layer,
|
194 |
-
value_layer,
|
195 |
-
indices_q,
|
196 |
-
(cu_seqlens_q, cu_seqlens_k),
|
197 |
-
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
198 |
-
)
|
199 |
-
|
200 |
-
def forward(
|
201 |
-
self,
|
202 |
-
x,
|
203 |
-
x_mask,
|
204 |
-
freqs_cis,
|
205 |
-
y=None,
|
206 |
-
y_mask=None,
|
207 |
-
init_cache=False,
|
208 |
-
):
|
209 |
-
bsz, seqlen, _ = x.size()
|
210 |
-
xq = self.wq(x)
|
211 |
-
xk = self.wk(x)
|
212 |
-
xv = self.wv(x)
|
213 |
-
|
214 |
-
if x_mask is None:
|
215 |
-
x_mask = torch.ones(bsz, seqlen, dtype=torch.bool, device=x.device)
|
216 |
-
inp_dtype = xq.dtype
|
217 |
-
|
218 |
-
xq = self.q_norm(xq)
|
219 |
-
xk = self.k_norm(xk)
|
220 |
-
|
221 |
-
xq = xq.view(bsz, seqlen, self.n_heads, self.head_dim)
|
222 |
-
xk = xk.view(bsz, seqlen, self.n_kv_heads, self.head_dim)
|
223 |
-
xv = xv.view(bsz, seqlen, self.n_kv_heads, self.head_dim)
|
224 |
-
|
225 |
-
if self.n_kv_heads != self.n_heads:
|
226 |
-
n_rep = self.n_heads // self.n_kv_heads
|
227 |
-
xk = xk.repeat_interleave(n_rep, dim=2)
|
228 |
-
xv = xv.repeat_interleave(n_rep, dim=2)
|
229 |
-
|
230 |
-
freqs_cis = freqs_cis.to(xq.device)
|
231 |
-
xq, xk = self.apply_rotary_emb(xq, xk, freqs_cis)
|
232 |
-
|
233 |
-
if inp_dtype in [torch.float16, torch.bfloat16]:
|
234 |
-
# begin var_len flash attn
|
235 |
-
(
|
236 |
-
query_states,
|
237 |
-
key_states,
|
238 |
-
value_states,
|
239 |
-
indices_q,
|
240 |
-
cu_seq_lens,
|
241 |
-
max_seq_lens,
|
242 |
-
) = self._upad_input(xq, xk, xv, x_mask, seqlen)
|
243 |
-
|
244 |
-
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
245 |
-
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
246 |
-
|
247 |
-
attn_output_unpad = flash_attn_varlen_func(
|
248 |
-
query_states.to(inp_dtype),
|
249 |
-
key_states.to(inp_dtype),
|
250 |
-
value_states.to(inp_dtype),
|
251 |
-
cu_seqlens_q=cu_seqlens_q,
|
252 |
-
cu_seqlens_k=cu_seqlens_k,
|
253 |
-
max_seqlen_q=max_seqlen_in_batch_q,
|
254 |
-
max_seqlen_k=max_seqlen_in_batch_k,
|
255 |
-
dropout_p=0.0,
|
256 |
-
causal=False,
|
257 |
-
softmax_scale=None,
|
258 |
-
softcap=30,
|
259 |
-
)
|
260 |
-
output = pad_input(attn_output_unpad, indices_q, bsz, seqlen)
|
261 |
-
else:
|
262 |
-
output = (
|
263 |
-
F.scaled_dot_product_attention(
|
264 |
-
xq.permute(0, 2, 1, 3),
|
265 |
-
xk.permute(0, 2, 1, 3),
|
266 |
-
xv.permute(0, 2, 1, 3),
|
267 |
-
attn_mask=x_mask.bool().view(bsz, 1, 1, seqlen).expand(-1, self.n_heads, seqlen, -1),
|
268 |
-
scale=None,
|
269 |
-
)
|
270 |
-
.permute(0, 2, 1, 3)
|
271 |
-
.to(inp_dtype)
|
272 |
-
) #ok
|
273 |
-
|
274 |
-
|
275 |
-
if hasattr(self, "wk_y"):
|
276 |
-
yk = self.ky_norm(self.wk_y(y)).view(bsz, -1, self.n_kv_heads, self.head_dim)
|
277 |
-
yv = self.wv_y(y).view(bsz, -1, self.n_kv_heads, self.head_dim)
|
278 |
-
n_rep = self.n_heads // self.n_kv_heads
|
279 |
-
# if n_rep >= 1:
|
280 |
-
# yk = yk.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
|
281 |
-
# yv = yv.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
|
282 |
-
if n_rep >= 1:
|
283 |
-
yk = einops.repeat(yk, "b l h d -> b l (repeat h) d", repeat=n_rep)
|
284 |
-
yv = einops.repeat(yv, "b l h d -> b l (repeat h) d", repeat=n_rep)
|
285 |
-
output_y = F.scaled_dot_product_attention(
|
286 |
-
xq.permute(0, 2, 1, 3),
|
287 |
-
yk.permute(0, 2, 1, 3),
|
288 |
-
yv.permute(0, 2, 1, 3),
|
289 |
-
y_mask.view(bsz, 1, 1, -1).expand(bsz, self.n_heads, seqlen, -1).to(torch.bool),
|
290 |
-
).permute(0, 2, 1, 3)
|
291 |
-
output_y = output_y * self.gate.tanh().view(1, 1, -1, 1)
|
292 |
-
output = output + output_y
|
293 |
-
|
294 |
-
output = output.flatten(-2)
|
295 |
-
output = self.wo(output)
|
296 |
-
|
297 |
-
return output.to(inp_dtype)
|
298 |
-
|
299 |
-
class TransformerBlock(nn.Module):
|
300 |
-
"""
|
301 |
-
Corresponds to the Transformer block in the JAX code.
|
302 |
-
"""
|
303 |
-
def __init__(
|
304 |
-
self,
|
305 |
-
dim,
|
306 |
-
n_heads,
|
307 |
-
n_kv_heads,
|
308 |
-
multiple_of,
|
309 |
-
ffn_dim_multiplier,
|
310 |
-
norm_eps,
|
311 |
-
qk_norm,
|
312 |
-
y_dim,
|
313 |
-
max_position_embeddings,
|
314 |
-
):
|
315 |
-
super().__init__()
|
316 |
-
self.attention = Attention(dim, n_heads, n_kv_heads, qk_norm, y_dim=y_dim, max_position_embeddings=max_position_embeddings)
|
317 |
-
self.feed_forward = LLamaFeedForward(
|
318 |
-
dim=dim,
|
319 |
-
hidden_dim=4 * dim,
|
320 |
-
multiple_of=multiple_of,
|
321 |
-
ffn_dim_multiplier=ffn_dim_multiplier,
|
322 |
-
)
|
323 |
-
self.attention_norm1 = RMSNorm(dim, eps=norm_eps)
|
324 |
-
self.attention_norm2 = RMSNorm(dim, eps=norm_eps)
|
325 |
-
self.ffn_norm1 = RMSNorm(dim, eps=norm_eps)
|
326 |
-
self.ffn_norm2 = RMSNorm(dim, eps=norm_eps)
|
327 |
-
self.adaLN_modulation = nn.Sequential(
|
328 |
-
nn.SiLU(),
|
329 |
-
nn.Linear(min(dim, 1024), 4 * dim),
|
330 |
-
)
|
331 |
-
self.attention_y_norm = RMSNorm(y_dim, eps=norm_eps)
|
332 |
-
|
333 |
-
def forward(
|
334 |
-
self,
|
335 |
-
x,
|
336 |
-
x_mask,
|
337 |
-
freqs_cis,
|
338 |
-
y,
|
339 |
-
y_mask,
|
340 |
-
adaln_input=None,
|
341 |
-
):
|
342 |
-
if adaln_input is not None:
|
343 |
-
scales_gates = self.adaLN_modulation(adaln_input)
|
344 |
-
# TODO: Duong - check the dimension of chunking
|
345 |
-
# scale_msa, gate_msa, scale_mlp, gate_mlp = scales_gates.chunk(4, dim=-1)
|
346 |
-
scale_msa, gate_msa, scale_mlp, gate_mlp = scales_gates.chunk(4, dim=-1)
|
347 |
-
x = x + torch.tanh(gate_msa) * self.attention_norm2(
|
348 |
-
self.attention(
|
349 |
-
modulate(self.attention_norm1(x), scale_msa), # ok
|
350 |
-
x_mask,
|
351 |
-
freqs_cis,
|
352 |
-
self.attention_y_norm(y), # ok
|
353 |
-
y_mask,
|
354 |
-
)
|
355 |
-
)
|
356 |
-
x = x + torch.tanh(gate_mlp) * self.ffn_norm2(
|
357 |
-
self.feed_forward(
|
358 |
-
modulate(self.ffn_norm1(x), scale_mlp),
|
359 |
-
)
|
360 |
-
)
|
361 |
-
else:
|
362 |
-
x = x + self.attention_norm2(
|
363 |
-
self.attention(
|
364 |
-
self.attention_norm1(x),
|
365 |
-
x_mask,
|
366 |
-
freqs_cis,
|
367 |
-
self.attention_y_norm(y),
|
368 |
-
y_mask,
|
369 |
-
)
|
370 |
-
)
|
371 |
-
x = x + self.ffn_norm2(self.feed_forward(self.ffn_norm1(x)))
|
372 |
-
return x
|
373 |
-
|
374 |
-
|
375 |
-
class NextDiT(ModelMixin, ConfigMixin):
|
376 |
-
"""
|
377 |
-
Diffusion model with a Transformer backbone for joint image-video training.
|
378 |
-
"""
|
379 |
-
@register_to_config
|
380 |
-
def __init__(
|
381 |
-
self,
|
382 |
-
input_size=(1, 32, 32),
|
383 |
-
patch_size=(1, 2, 2),
|
384 |
-
in_channels=16,
|
385 |
-
hidden_size=4096,
|
386 |
-
depth=32,
|
387 |
-
num_heads=32,
|
388 |
-
num_kv_heads=None,
|
389 |
-
multiple_of=256,
|
390 |
-
ffn_dim_multiplier=None,
|
391 |
-
norm_eps=1e-5,
|
392 |
-
pred_sigma=False,
|
393 |
-
caption_channels=4096,
|
394 |
-
qk_norm=False,
|
395 |
-
norm_type="rms",
|
396 |
-
model_max_length=120,
|
397 |
-
rotary_max_length=384,
|
398 |
-
rotary_max_length_t=None
|
399 |
-
):
|
400 |
-
super().__init__()
|
401 |
-
self.input_size = input_size
|
402 |
-
self.patch_size = patch_size
|
403 |
-
self.in_channels = in_channels
|
404 |
-
self.hidden_size = hidden_size
|
405 |
-
self.depth = depth
|
406 |
-
self.num_heads = num_heads
|
407 |
-
self.num_kv_heads = num_kv_heads or num_heads
|
408 |
-
self.multiple_of = multiple_of
|
409 |
-
self.ffn_dim_multiplier = ffn_dim_multiplier
|
410 |
-
self.norm_eps = norm_eps
|
411 |
-
self.pred_sigma = pred_sigma
|
412 |
-
self.caption_channels = caption_channels
|
413 |
-
self.qk_norm = qk_norm
|
414 |
-
self.norm_type = norm_type
|
415 |
-
self.model_max_length = model_max_length
|
416 |
-
self.rotary_max_length = rotary_max_length
|
417 |
-
self.rotary_max_length_t = rotary_max_length_t
|
418 |
-
self.out_channels = in_channels * 2 if pred_sigma else in_channels
|
419 |
-
|
420 |
-
self.x_embedder = nn.Linear(np.prod(self.patch_size) * in_channels, hidden_size)
|
421 |
-
|
422 |
-
self.t_embedder = TimestepEmbedder(min(hidden_size, 1024))
|
423 |
-
self.y_embedder = nn.Sequential(
|
424 |
-
nn.LayerNorm(caption_channels, eps=1e-6),
|
425 |
-
nn.Linear(caption_channels, min(hidden_size, 1024)),
|
426 |
-
)
|
427 |
-
|
428 |
-
self.layers = nn.ModuleList([
|
429 |
-
TransformerBlock(
|
430 |
-
dim=hidden_size,
|
431 |
-
n_heads=num_heads,
|
432 |
-
n_kv_heads=self.num_kv_heads,
|
433 |
-
multiple_of=multiple_of,
|
434 |
-
ffn_dim_multiplier=ffn_dim_multiplier,
|
435 |
-
norm_eps=norm_eps,
|
436 |
-
qk_norm=qk_norm,
|
437 |
-
y_dim=caption_channels,
|
438 |
-
max_position_embeddings=rotary_max_length,
|
439 |
-
)
|
440 |
-
for _ in range(depth)
|
441 |
-
])
|
442 |
-
|
443 |
-
self.final_layer = FinalLayer(
|
444 |
-
hidden_size=hidden_size,
|
445 |
-
num_patches=np.prod(patch_size),
|
446 |
-
out_channels=self.out_channels,
|
447 |
-
)
|
448 |
-
|
449 |
-
assert (hidden_size // num_heads) % 6 == 0, "3d rope needs head dim to be divisible by 6"
|
450 |
-
|
451 |
-
self.freqs_cis = self.precompute_freqs_cis(
|
452 |
-
hidden_size // num_heads,
|
453 |
-
self.rotary_max_length,
|
454 |
-
end_t=self.rotary_max_length_t
|
455 |
-
)
|
456 |
-
|
457 |
-
def to(self, *args, **kwargs):
|
458 |
-
self = super().to(*args, **kwargs)
|
459 |
-
# self.freqs_cis = self.freqs_cis.to(*args, **kwargs)
|
460 |
-
return self
|
461 |
-
|
462 |
-
@staticmethod
|
463 |
-
def precompute_freqs_cis(
|
464 |
-
dim: int,
|
465 |
-
end: int,
|
466 |
-
end_t: int = None,
|
467 |
-
theta: float = 10000.0,
|
468 |
-
scale_factor: float = 1.0,
|
469 |
-
scale_watershed: float = 1.0,
|
470 |
-
timestep: float = 1.0,
|
471 |
-
):
|
472 |
-
if timestep < scale_watershed:
|
473 |
-
linear_factor = scale_factor
|
474 |
-
ntk_factor = 1.0
|
475 |
-
else:
|
476 |
-
linear_factor = 1.0
|
477 |
-
ntk_factor = scale_factor
|
478 |
-
|
479 |
-
theta = theta * ntk_factor
|
480 |
-
freqs = 1.0 / (theta ** (torch.arange(0, dim, 6)[: (dim // 6)] / dim)) / linear_factor
|
481 |
-
|
482 |
-
timestep = torch.arange(end, dtype=torch.float32)
|
483 |
-
freqs = torch.outer(timestep, freqs).float()
|
484 |
-
freqs_cis = torch.exp(1j * freqs)
|
485 |
-
|
486 |
-
if end_t is not None:
|
487 |
-
freqs_t = 1.0 / (theta ** (torch.arange(0, dim, 6)[: (dim // 6)] / dim)) / linear_factor
|
488 |
-
timestep_t = torch.arange(end_t, dtype=torch.float32)
|
489 |
-
freqs_t = torch.outer(timestep_t, freqs_t).float()
|
490 |
-
freqs_cis_t = torch.exp(1j * freqs_t)
|
491 |
-
freqs_cis_t = freqs_cis_t.view(end_t, 1, 1, dim // 6).repeat(1, end, end, 1)
|
492 |
-
else:
|
493 |
-
end_t = end
|
494 |
-
freqs_cis_t = freqs_cis.view(end_t, 1, 1, dim // 6).repeat(1, end, end, 1)
|
495 |
-
|
496 |
-
freqs_cis_h = freqs_cis.view(1, end, 1, dim // 6).repeat(end_t, 1, end, 1)
|
497 |
-
freqs_cis_w = freqs_cis.view(1, 1, end, dim // 6).repeat(end_t, end, 1, 1)
|
498 |
-
freqs_cis = torch.cat([freqs_cis_t, freqs_cis_h, freqs_cis_w], dim=-1).view(end_t, end, end, -1)
|
499 |
-
return freqs_cis
|
500 |
-
|
501 |
-
def forward(
|
502 |
-
self,
|
503 |
-
samples,
|
504 |
-
timesteps,
|
505 |
-
encoder_hidden_states,
|
506 |
-
encoder_attention_mask,
|
507 |
-
scale_factor: float = 1.0, # scale_factor for rotary embedding
|
508 |
-
scale_watershed: float = 1.0, # scale_watershed for rotary embedding
|
509 |
-
):
|
510 |
-
if samples.ndim == 4: # B C H W
|
511 |
-
samples = samples[:, None, ...] # B F C H W
|
512 |
-
|
513 |
-
precomputed_freqs_cis = None
|
514 |
-
if scale_factor != 1 or scale_watershed != 1:
|
515 |
-
precomputed_freqs_cis = self.precompute_freqs_cis(
|
516 |
-
self.hidden_size // self.num_heads,
|
517 |
-
self.rotary_max_length,
|
518 |
-
end_t=self.rotary_max_length_t,
|
519 |
-
scale_factor=scale_factor,
|
520 |
-
scale_watershed=scale_watershed,
|
521 |
-
timestep=torch.max(timesteps.cpu()).item()
|
522 |
-
)
|
523 |
-
|
524 |
-
if len(timesteps.shape) == 5:
|
525 |
-
t, *_ = self.patchify(timesteps, precomputed_freqs_cis)
|
526 |
-
timesteps = t.mean(dim=-1)
|
527 |
-
elif len(timesteps.shape) == 1:
|
528 |
-
timesteps = timesteps[:, None, None, None, None].expand_as(samples)
|
529 |
-
t, *_ = self.patchify(timesteps, precomputed_freqs_cis)
|
530 |
-
timesteps = t.mean(dim=-1)
|
531 |
-
samples, T, H, W, freqs_cis = self.patchify(samples, precomputed_freqs_cis)
|
532 |
-
samples = self.x_embedder(samples)
|
533 |
-
t = self.t_embedder(timesteps)
|
534 |
-
|
535 |
-
encoder_attention_mask_float = encoder_attention_mask[..., None].float()
|
536 |
-
encoder_hidden_states_pool = (encoder_hidden_states * encoder_attention_mask_float).sum(dim=1) / (encoder_attention_mask_float.sum(dim=1) + 1e-8)
|
537 |
-
encoder_hidden_states_pool = encoder_hidden_states_pool.to(samples.dtype)
|
538 |
-
y = self.y_embedder(encoder_hidden_states_pool)
|
539 |
-
y = y.unsqueeze(1).expand(-1, samples.size(1), -1)
|
540 |
-
|
541 |
-
adaln_input = t + y
|
542 |
-
|
543 |
-
for block in self.layers:
|
544 |
-
samples = block(samples, None, freqs_cis, encoder_hidden_states, encoder_attention_mask, adaln_input)
|
545 |
-
|
546 |
-
samples = self.final_layer(samples, adaln_input)
|
547 |
-
samples = self.unpatchify(samples, T, H, W)
|
548 |
-
|
549 |
-
return samples
|
550 |
-
|
551 |
-
def patchify(self, x, precompute_freqs_cis=None):
|
552 |
-
# pytorch is C, H, W
|
553 |
-
B, T, C, H, W = x.size()
|
554 |
-
pT, pH, pW = self.patch_size
|
555 |
-
x = x.view(B, T // pT, pT, C, H // pH, pH, W // pW, pW)
|
556 |
-
x = x.permute(0, 1, 4, 6, 2, 5, 7, 3)
|
557 |
-
x = x.reshape(B, -1, pT * pH * pW * C)
|
558 |
-
if precompute_freqs_cis is None:
|
559 |
-
freqs_cis = self.freqs_cis[: T // pT, :H // pH, :W // pW].reshape(-1, * self.freqs_cis.shape[3:])[None].to(x.device)
|
560 |
-
else:
|
561 |
-
freqs_cis = precompute_freqs_cis[: T // pT, :H // pH, :W // pW].reshape(-1, * precompute_freqs_cis.shape[3:])[None].to(x.device)
|
562 |
-
return x, T // pT, H // pH, W // pW, freqs_cis
|
563 |
-
|
564 |
-
def unpatchify(self, x, T, H, W):
|
565 |
-
B = x.size(0)
|
566 |
-
C = self.out_channels
|
567 |
-
pT, pH, pW = self.patch_size
|
568 |
-
x = x.view(B, T, H, W, pT, pH, pW, C)
|
569 |
-
x = x.permute(0, 1, 4, 7, 2, 5, 3, 6)
|
570 |
-
x = x.reshape(B, T * pT, C, H * pH, W * pW)
|
571 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|