lehduong commited on
Commit
ca1d959
·
verified ·
1 Parent(s): ac179f8

Delete models/denoiser/nextdit/modeling_nextdit.py with huggingface_hub

Browse files
models/denoiser/nextdit/modeling_nextdit.py DELETED
@@ -1,571 +0,0 @@
1
-
2
- import torch
3
- import torch.nn as nn
4
- import torch.nn.functional as F
5
- import numpy as np
6
- import einops
7
- from diffusers.configuration_utils import ConfigMixin, register_to_config
8
- from diffusers.models.modeling_utils import ModelMixin
9
- from typing import Any, Tuple, Optional
10
- from flash_attn import flash_attn_varlen_func
11
- from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
12
-
13
- from .layers import LLamaFeedForward, RMSNorm
14
-
15
- # import frasch
16
-
17
-
18
- def modulate(x, scale):
19
- return x * (1 + scale)
20
-
21
- class TimestepEmbedder(nn.Module):
22
- """
23
- Embeds scalar timesteps into vector representations.
24
- """
25
- def __init__(self, hidden_size, frequency_embedding_size=256):
26
- super().__init__()
27
- self.hidden_size = hidden_size
28
- self.frequency_embedding_size = frequency_embedding_size
29
- self.mlp = nn.Sequential(
30
- nn.Linear(self.frequency_embedding_size, self.hidden_size),
31
- nn.SiLU(),
32
- nn.Linear(self.hidden_size, self.hidden_size),
33
- )
34
-
35
- @staticmethod
36
- def timestep_embedding(t, dim, max_period=10000):
37
- """
38
- Create sinusoidal timestep embeddings.
39
- :param t: a 1-D Tensor of N indices, one per batch element.
40
- :param dim: the dimension of the output.
41
- :param max_period: controls the minimum frequency of the embeddings.
42
- :return: an (N, D) Tensor of positional embeddings.
43
- """
44
- half = dim // 2
45
- freqs = torch.exp(
46
- -np.log(max_period) * torch.arange(0, half, dtype=t.dtype) / half
47
- ).to(t.device)
48
- args = t[:, :, None] * freqs[None, :]
49
- embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
50
- if dim % 2:
51
- embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :, :1])], dim=-1)
52
- return embedding
53
-
54
- def forward(self, t):
55
- t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
56
- t_freq = t_freq.to(self.mlp[0].weight.dtype)
57
- return self.mlp(t_freq)
58
-
59
- class FinalLayer(nn.Module):
60
- def __init__(self, hidden_size, num_patches, out_channels):
61
- super().__init__()
62
- self.norm_final = nn.LayerNorm(hidden_size, eps=1e-6, elementwise_affine=False)
63
- self.linear = nn.Linear(hidden_size, num_patches * out_channels)
64
- self.adaLN_modulation = nn.Sequential(
65
- nn.SiLU(),
66
- nn.Linear(min(hidden_size, 1024), hidden_size),
67
- )
68
-
69
- def forward(self, x, c):
70
- scale = self.adaLN_modulation(c)
71
- x = modulate(self.norm_final(x), scale)
72
- x = self.linear(x)
73
- return x
74
-
75
- class Attention(nn.Module):
76
- def __init__(
77
- self,
78
- dim,
79
- n_heads,
80
- n_kv_heads=None,
81
- qk_norm=False,
82
- y_dim=0,
83
- base_seqlen=None,
84
- proportional_attn=False,
85
- attention_dropout=0.0,
86
- max_position_embeddings=384,
87
- ):
88
- super().__init__()
89
- self.dim = dim
90
- self.n_heads = n_heads
91
- self.n_kv_heads = n_kv_heads or n_heads
92
- self.qk_norm = qk_norm
93
- self.y_dim = y_dim
94
- self.base_seqlen = base_seqlen
95
- self.proportional_attn = proportional_attn
96
- self.attention_dropout = attention_dropout
97
- self.max_position_embeddings = max_position_embeddings
98
-
99
- self.head_dim = dim // n_heads
100
-
101
- self.wq = nn.Linear(dim, n_heads * self.head_dim, bias=False)
102
- self.wk = nn.Linear(dim, self.n_kv_heads * self.head_dim, bias=False)
103
- self.wv = nn.Linear(dim, self.n_kv_heads * self.head_dim, bias=False)
104
-
105
- if y_dim > 0:
106
- self.wk_y = nn.Linear(y_dim, self.n_kv_heads * self.head_dim, bias=False)
107
- self.wv_y = nn.Linear(y_dim, self.n_kv_heads * self.head_dim, bias=False)
108
- self.gate = nn.Parameter(torch.zeros(n_heads))
109
-
110
- self.wo = nn.Linear(n_heads * self.head_dim, dim, bias=False)
111
-
112
- if qk_norm:
113
- self.q_norm = nn.LayerNorm(self.n_heads * self.head_dim)
114
- self.k_norm = nn.LayerNorm(self.n_kv_heads * self.head_dim)
115
- if y_dim > 0:
116
- self.ky_norm = nn.LayerNorm(self.n_kv_heads * self.head_dim, eps=1e-6)
117
- else:
118
- self.ky_norm = nn.Identity()
119
- else:
120
- self.q_norm = nn.Identity()
121
- self.k_norm = nn.Identity()
122
- self.ky_norm = nn.Identity()
123
-
124
-
125
- @staticmethod
126
- def apply_rotary_emb(xq, xk, freqs_cis):
127
- # xq, xk: [batch_size, seq_len, n_heads, head_dim]
128
- # freqs_cis: [1, seq_len, 1, head_dim]
129
- xq_ = xq.float().reshape(*xq.shape[:-1], -1, 2)
130
- xk_ = xk.float().reshape(*xk.shape[:-1], -1, 2)
131
-
132
- xq_complex = torch.view_as_complex(xq_)
133
- xk_complex = torch.view_as_complex(xk_)
134
-
135
- freqs_cis = freqs_cis.unsqueeze(2)
136
-
137
- # Apply freqs_cis
138
- xq_out = xq_complex * freqs_cis
139
- xk_out = xk_complex * freqs_cis
140
-
141
- # Convert back to real numbers
142
- xq_out = torch.view_as_real(xq_out).flatten(-2)
143
- xk_out = torch.view_as_real(xk_out).flatten(-2)
144
-
145
- return xq_out.type_as(xq), xk_out.type_as(xk)
146
-
147
- # copied from huggingface modeling_llama.py
148
- def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
149
- def _get_unpad_data(attention_mask):
150
- seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
151
- indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
152
- max_seqlen_in_batch = seqlens_in_batch.max().item()
153
- cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
154
- return (
155
- indices,
156
- cu_seqlens,
157
- max_seqlen_in_batch,
158
- )
159
-
160
- indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
161
- batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
162
-
163
- key_layer = index_first_axis(
164
- key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
165
- indices_k,
166
- )
167
- value_layer = index_first_axis(
168
- value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
169
- indices_k,
170
- )
171
- if query_length == kv_seq_len:
172
- query_layer = index_first_axis(
173
- query_layer.reshape(batch_size * kv_seq_len, self.n_heads, head_dim),
174
- indices_k,
175
- )
176
- cu_seqlens_q = cu_seqlens_k
177
- max_seqlen_in_batch_q = max_seqlen_in_batch_k
178
- indices_q = indices_k
179
- elif query_length == 1:
180
- max_seqlen_in_batch_q = 1
181
- cu_seqlens_q = torch.arange(
182
- batch_size + 1, dtype=torch.int32, device=query_layer.device
183
- ) # There is a memcpy here, that is very bad.
184
- indices_q = cu_seqlens_q[:-1]
185
- query_layer = query_layer.squeeze(1)
186
- else:
187
- # The -q_len: slice assumes left padding.
188
- attention_mask = attention_mask[:, -query_length:]
189
- query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
190
-
191
- return (
192
- query_layer,
193
- key_layer,
194
- value_layer,
195
- indices_q,
196
- (cu_seqlens_q, cu_seqlens_k),
197
- (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
198
- )
199
-
200
- def forward(
201
- self,
202
- x,
203
- x_mask,
204
- freqs_cis,
205
- y=None,
206
- y_mask=None,
207
- init_cache=False,
208
- ):
209
- bsz, seqlen, _ = x.size()
210
- xq = self.wq(x)
211
- xk = self.wk(x)
212
- xv = self.wv(x)
213
-
214
- if x_mask is None:
215
- x_mask = torch.ones(bsz, seqlen, dtype=torch.bool, device=x.device)
216
- inp_dtype = xq.dtype
217
-
218
- xq = self.q_norm(xq)
219
- xk = self.k_norm(xk)
220
-
221
- xq = xq.view(bsz, seqlen, self.n_heads, self.head_dim)
222
- xk = xk.view(bsz, seqlen, self.n_kv_heads, self.head_dim)
223
- xv = xv.view(bsz, seqlen, self.n_kv_heads, self.head_dim)
224
-
225
- if self.n_kv_heads != self.n_heads:
226
- n_rep = self.n_heads // self.n_kv_heads
227
- xk = xk.repeat_interleave(n_rep, dim=2)
228
- xv = xv.repeat_interleave(n_rep, dim=2)
229
-
230
- freqs_cis = freqs_cis.to(xq.device)
231
- xq, xk = self.apply_rotary_emb(xq, xk, freqs_cis)
232
-
233
- if inp_dtype in [torch.float16, torch.bfloat16]:
234
- # begin var_len flash attn
235
- (
236
- query_states,
237
- key_states,
238
- value_states,
239
- indices_q,
240
- cu_seq_lens,
241
- max_seq_lens,
242
- ) = self._upad_input(xq, xk, xv, x_mask, seqlen)
243
-
244
- cu_seqlens_q, cu_seqlens_k = cu_seq_lens
245
- max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
246
-
247
- attn_output_unpad = flash_attn_varlen_func(
248
- query_states.to(inp_dtype),
249
- key_states.to(inp_dtype),
250
- value_states.to(inp_dtype),
251
- cu_seqlens_q=cu_seqlens_q,
252
- cu_seqlens_k=cu_seqlens_k,
253
- max_seqlen_q=max_seqlen_in_batch_q,
254
- max_seqlen_k=max_seqlen_in_batch_k,
255
- dropout_p=0.0,
256
- causal=False,
257
- softmax_scale=None,
258
- softcap=30,
259
- )
260
- output = pad_input(attn_output_unpad, indices_q, bsz, seqlen)
261
- else:
262
- output = (
263
- F.scaled_dot_product_attention(
264
- xq.permute(0, 2, 1, 3),
265
- xk.permute(0, 2, 1, 3),
266
- xv.permute(0, 2, 1, 3),
267
- attn_mask=x_mask.bool().view(bsz, 1, 1, seqlen).expand(-1, self.n_heads, seqlen, -1),
268
- scale=None,
269
- )
270
- .permute(0, 2, 1, 3)
271
- .to(inp_dtype)
272
- ) #ok
273
-
274
-
275
- if hasattr(self, "wk_y"):
276
- yk = self.ky_norm(self.wk_y(y)).view(bsz, -1, self.n_kv_heads, self.head_dim)
277
- yv = self.wv_y(y).view(bsz, -1, self.n_kv_heads, self.head_dim)
278
- n_rep = self.n_heads // self.n_kv_heads
279
- # if n_rep >= 1:
280
- # yk = yk.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
281
- # yv = yv.unsqueeze(3).repeat(1, 1, 1, n_rep, 1).flatten(2, 3)
282
- if n_rep >= 1:
283
- yk = einops.repeat(yk, "b l h d -> b l (repeat h) d", repeat=n_rep)
284
- yv = einops.repeat(yv, "b l h d -> b l (repeat h) d", repeat=n_rep)
285
- output_y = F.scaled_dot_product_attention(
286
- xq.permute(0, 2, 1, 3),
287
- yk.permute(0, 2, 1, 3),
288
- yv.permute(0, 2, 1, 3),
289
- y_mask.view(bsz, 1, 1, -1).expand(bsz, self.n_heads, seqlen, -1).to(torch.bool),
290
- ).permute(0, 2, 1, 3)
291
- output_y = output_y * self.gate.tanh().view(1, 1, -1, 1)
292
- output = output + output_y
293
-
294
- output = output.flatten(-2)
295
- output = self.wo(output)
296
-
297
- return output.to(inp_dtype)
298
-
299
- class TransformerBlock(nn.Module):
300
- """
301
- Corresponds to the Transformer block in the JAX code.
302
- """
303
- def __init__(
304
- self,
305
- dim,
306
- n_heads,
307
- n_kv_heads,
308
- multiple_of,
309
- ffn_dim_multiplier,
310
- norm_eps,
311
- qk_norm,
312
- y_dim,
313
- max_position_embeddings,
314
- ):
315
- super().__init__()
316
- self.attention = Attention(dim, n_heads, n_kv_heads, qk_norm, y_dim=y_dim, max_position_embeddings=max_position_embeddings)
317
- self.feed_forward = LLamaFeedForward(
318
- dim=dim,
319
- hidden_dim=4 * dim,
320
- multiple_of=multiple_of,
321
- ffn_dim_multiplier=ffn_dim_multiplier,
322
- )
323
- self.attention_norm1 = RMSNorm(dim, eps=norm_eps)
324
- self.attention_norm2 = RMSNorm(dim, eps=norm_eps)
325
- self.ffn_norm1 = RMSNorm(dim, eps=norm_eps)
326
- self.ffn_norm2 = RMSNorm(dim, eps=norm_eps)
327
- self.adaLN_modulation = nn.Sequential(
328
- nn.SiLU(),
329
- nn.Linear(min(dim, 1024), 4 * dim),
330
- )
331
- self.attention_y_norm = RMSNorm(y_dim, eps=norm_eps)
332
-
333
- def forward(
334
- self,
335
- x,
336
- x_mask,
337
- freqs_cis,
338
- y,
339
- y_mask,
340
- adaln_input=None,
341
- ):
342
- if adaln_input is not None:
343
- scales_gates = self.adaLN_modulation(adaln_input)
344
- # TODO: Duong - check the dimension of chunking
345
- # scale_msa, gate_msa, scale_mlp, gate_mlp = scales_gates.chunk(4, dim=-1)
346
- scale_msa, gate_msa, scale_mlp, gate_mlp = scales_gates.chunk(4, dim=-1)
347
- x = x + torch.tanh(gate_msa) * self.attention_norm2(
348
- self.attention(
349
- modulate(self.attention_norm1(x), scale_msa), # ok
350
- x_mask,
351
- freqs_cis,
352
- self.attention_y_norm(y), # ok
353
- y_mask,
354
- )
355
- )
356
- x = x + torch.tanh(gate_mlp) * self.ffn_norm2(
357
- self.feed_forward(
358
- modulate(self.ffn_norm1(x), scale_mlp),
359
- )
360
- )
361
- else:
362
- x = x + self.attention_norm2(
363
- self.attention(
364
- self.attention_norm1(x),
365
- x_mask,
366
- freqs_cis,
367
- self.attention_y_norm(y),
368
- y_mask,
369
- )
370
- )
371
- x = x + self.ffn_norm2(self.feed_forward(self.ffn_norm1(x)))
372
- return x
373
-
374
-
375
- class NextDiT(ModelMixin, ConfigMixin):
376
- """
377
- Diffusion model with a Transformer backbone for joint image-video training.
378
- """
379
- @register_to_config
380
- def __init__(
381
- self,
382
- input_size=(1, 32, 32),
383
- patch_size=(1, 2, 2),
384
- in_channels=16,
385
- hidden_size=4096,
386
- depth=32,
387
- num_heads=32,
388
- num_kv_heads=None,
389
- multiple_of=256,
390
- ffn_dim_multiplier=None,
391
- norm_eps=1e-5,
392
- pred_sigma=False,
393
- caption_channels=4096,
394
- qk_norm=False,
395
- norm_type="rms",
396
- model_max_length=120,
397
- rotary_max_length=384,
398
- rotary_max_length_t=None
399
- ):
400
- super().__init__()
401
- self.input_size = input_size
402
- self.patch_size = patch_size
403
- self.in_channels = in_channels
404
- self.hidden_size = hidden_size
405
- self.depth = depth
406
- self.num_heads = num_heads
407
- self.num_kv_heads = num_kv_heads or num_heads
408
- self.multiple_of = multiple_of
409
- self.ffn_dim_multiplier = ffn_dim_multiplier
410
- self.norm_eps = norm_eps
411
- self.pred_sigma = pred_sigma
412
- self.caption_channels = caption_channels
413
- self.qk_norm = qk_norm
414
- self.norm_type = norm_type
415
- self.model_max_length = model_max_length
416
- self.rotary_max_length = rotary_max_length
417
- self.rotary_max_length_t = rotary_max_length_t
418
- self.out_channels = in_channels * 2 if pred_sigma else in_channels
419
-
420
- self.x_embedder = nn.Linear(np.prod(self.patch_size) * in_channels, hidden_size)
421
-
422
- self.t_embedder = TimestepEmbedder(min(hidden_size, 1024))
423
- self.y_embedder = nn.Sequential(
424
- nn.LayerNorm(caption_channels, eps=1e-6),
425
- nn.Linear(caption_channels, min(hidden_size, 1024)),
426
- )
427
-
428
- self.layers = nn.ModuleList([
429
- TransformerBlock(
430
- dim=hidden_size,
431
- n_heads=num_heads,
432
- n_kv_heads=self.num_kv_heads,
433
- multiple_of=multiple_of,
434
- ffn_dim_multiplier=ffn_dim_multiplier,
435
- norm_eps=norm_eps,
436
- qk_norm=qk_norm,
437
- y_dim=caption_channels,
438
- max_position_embeddings=rotary_max_length,
439
- )
440
- for _ in range(depth)
441
- ])
442
-
443
- self.final_layer = FinalLayer(
444
- hidden_size=hidden_size,
445
- num_patches=np.prod(patch_size),
446
- out_channels=self.out_channels,
447
- )
448
-
449
- assert (hidden_size // num_heads) % 6 == 0, "3d rope needs head dim to be divisible by 6"
450
-
451
- self.freqs_cis = self.precompute_freqs_cis(
452
- hidden_size // num_heads,
453
- self.rotary_max_length,
454
- end_t=self.rotary_max_length_t
455
- )
456
-
457
- def to(self, *args, **kwargs):
458
- self = super().to(*args, **kwargs)
459
- # self.freqs_cis = self.freqs_cis.to(*args, **kwargs)
460
- return self
461
-
462
- @staticmethod
463
- def precompute_freqs_cis(
464
- dim: int,
465
- end: int,
466
- end_t: int = None,
467
- theta: float = 10000.0,
468
- scale_factor: float = 1.0,
469
- scale_watershed: float = 1.0,
470
- timestep: float = 1.0,
471
- ):
472
- if timestep < scale_watershed:
473
- linear_factor = scale_factor
474
- ntk_factor = 1.0
475
- else:
476
- linear_factor = 1.0
477
- ntk_factor = scale_factor
478
-
479
- theta = theta * ntk_factor
480
- freqs = 1.0 / (theta ** (torch.arange(0, dim, 6)[: (dim // 6)] / dim)) / linear_factor
481
-
482
- timestep = torch.arange(end, dtype=torch.float32)
483
- freqs = torch.outer(timestep, freqs).float()
484
- freqs_cis = torch.exp(1j * freqs)
485
-
486
- if end_t is not None:
487
- freqs_t = 1.0 / (theta ** (torch.arange(0, dim, 6)[: (dim // 6)] / dim)) / linear_factor
488
- timestep_t = torch.arange(end_t, dtype=torch.float32)
489
- freqs_t = torch.outer(timestep_t, freqs_t).float()
490
- freqs_cis_t = torch.exp(1j * freqs_t)
491
- freqs_cis_t = freqs_cis_t.view(end_t, 1, 1, dim // 6).repeat(1, end, end, 1)
492
- else:
493
- end_t = end
494
- freqs_cis_t = freqs_cis.view(end_t, 1, 1, dim // 6).repeat(1, end, end, 1)
495
-
496
- freqs_cis_h = freqs_cis.view(1, end, 1, dim // 6).repeat(end_t, 1, end, 1)
497
- freqs_cis_w = freqs_cis.view(1, 1, end, dim // 6).repeat(end_t, end, 1, 1)
498
- freqs_cis = torch.cat([freqs_cis_t, freqs_cis_h, freqs_cis_w], dim=-1).view(end_t, end, end, -1)
499
- return freqs_cis
500
-
501
- def forward(
502
- self,
503
- samples,
504
- timesteps,
505
- encoder_hidden_states,
506
- encoder_attention_mask,
507
- scale_factor: float = 1.0, # scale_factor for rotary embedding
508
- scale_watershed: float = 1.0, # scale_watershed for rotary embedding
509
- ):
510
- if samples.ndim == 4: # B C H W
511
- samples = samples[:, None, ...] # B F C H W
512
-
513
- precomputed_freqs_cis = None
514
- if scale_factor != 1 or scale_watershed != 1:
515
- precomputed_freqs_cis = self.precompute_freqs_cis(
516
- self.hidden_size // self.num_heads,
517
- self.rotary_max_length,
518
- end_t=self.rotary_max_length_t,
519
- scale_factor=scale_factor,
520
- scale_watershed=scale_watershed,
521
- timestep=torch.max(timesteps.cpu()).item()
522
- )
523
-
524
- if len(timesteps.shape) == 5:
525
- t, *_ = self.patchify(timesteps, precomputed_freqs_cis)
526
- timesteps = t.mean(dim=-1)
527
- elif len(timesteps.shape) == 1:
528
- timesteps = timesteps[:, None, None, None, None].expand_as(samples)
529
- t, *_ = self.patchify(timesteps, precomputed_freqs_cis)
530
- timesteps = t.mean(dim=-1)
531
- samples, T, H, W, freqs_cis = self.patchify(samples, precomputed_freqs_cis)
532
- samples = self.x_embedder(samples)
533
- t = self.t_embedder(timesteps)
534
-
535
- encoder_attention_mask_float = encoder_attention_mask[..., None].float()
536
- encoder_hidden_states_pool = (encoder_hidden_states * encoder_attention_mask_float).sum(dim=1) / (encoder_attention_mask_float.sum(dim=1) + 1e-8)
537
- encoder_hidden_states_pool = encoder_hidden_states_pool.to(samples.dtype)
538
- y = self.y_embedder(encoder_hidden_states_pool)
539
- y = y.unsqueeze(1).expand(-1, samples.size(1), -1)
540
-
541
- adaln_input = t + y
542
-
543
- for block in self.layers:
544
- samples = block(samples, None, freqs_cis, encoder_hidden_states, encoder_attention_mask, adaln_input)
545
-
546
- samples = self.final_layer(samples, adaln_input)
547
- samples = self.unpatchify(samples, T, H, W)
548
-
549
- return samples
550
-
551
- def patchify(self, x, precompute_freqs_cis=None):
552
- # pytorch is C, H, W
553
- B, T, C, H, W = x.size()
554
- pT, pH, pW = self.patch_size
555
- x = x.view(B, T // pT, pT, C, H // pH, pH, W // pW, pW)
556
- x = x.permute(0, 1, 4, 6, 2, 5, 7, 3)
557
- x = x.reshape(B, -1, pT * pH * pW * C)
558
- if precompute_freqs_cis is None:
559
- freqs_cis = self.freqs_cis[: T // pT, :H // pH, :W // pW].reshape(-1, * self.freqs_cis.shape[3:])[None].to(x.device)
560
- else:
561
- freqs_cis = precompute_freqs_cis[: T // pT, :H // pH, :W // pW].reshape(-1, * precompute_freqs_cis.shape[3:])[None].to(x.device)
562
- return x, T // pT, H // pH, W // pW, freqs_cis
563
-
564
- def unpatchify(self, x, T, H, W):
565
- B = x.size(0)
566
- C = self.out_channels
567
- pT, pH, pW = self.patch_size
568
- x = x.view(B, T, H, W, pT, pH, pW, C)
569
- x = x.permute(0, 1, 4, 7, 2, 5, 3, 6)
570
- x = x.reshape(B, T * pT, C, H * pH, W * pW)
571
- return x