File size: 4,572 Bytes
94a7057
53e3e9d
94a7057
 
 
 
 
 
 
 
 
53e3e9d
5c55275
0b844d0
94a7057
 
 
 
 
 
 
 
 
 
 
190cfc1
150f7b4
94a7057
 
742563f
94a7057
 
 
 
 
 
 
 
 
 
 
 
 
 
742563f
 
 
 
94a7057
 
 
 
 
 
 
 
742563f
94a7057
 
 
 
 
 
 
 
 
 
 
 
 
 
9265710
94a7057
 
 
 
 
e4d0488
53e3e9d
 
94a7057
53e3e9d
 
 
 
5c55275
 
53e3e9d
742563f
 
 
 
 
 
94a7057
 
 
 
 
 
 
 
 
68a30b9
94a7057
 
 
 
 
 
 
 
b777d77
53e3e9d
742563f
 
 
94a7057
 
 
53e3e9d
 
742563f
94a7057
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import gradio as gr
from gradio.components import Textbox, Checkbox
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, T5ForConditionalGeneration
from peft import PeftModel, PeftConfig
import torch
import datasets

# Load your fine-tuned model and tokenizer
model_name = "google/flan-t5-large"
peft_name = "legacy107/flan-t5-large-ia3-cpgQA"
tokenizer = AutoTokenizer.from_pretrained(model_name)
pretrained_model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large")
model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-large")
model = PeftModel.from_pretrained(model, peft_name)

peft_name = "legacy107/flan-t5-large-ia3-bioasq-paraphrase"
peft_config = PeftConfig.from_pretrained(peft_name)
paraphrase_model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
paraphrase_model = PeftModel.from_pretrained(paraphrase_model, peft_name)

max_length = 512
max_target_length = 200

# Load your dataset
dataset = datasets.load_dataset("minh21/cpgQA-v1.0-unique-context-test-10-percent-validation-10-percent", split="test")
# dataset = dataset.shuffle()
dataset = dataset.select([32, 7, 92, 8, 108, 51, 64, 84, 93, 94])


def paraphrase_answer(question, answer, use_pretrained=False):
    # Combine question and context
    input_text = f"question: {question}. Paraphrase the answer to make it more natural answer: {answer}"

    # Tokenize the input text
    input_ids = tokenizer(
        input_text,
        return_tensors="pt",
        padding="max_length",
        truncation=True,
        max_length=max_length,
    ).input_ids

    # Generate the answer
    with torch.no_grad():
        if use_pretrained:
            generated_ids = pretrained_model.generate(input_ids=input_ids, max_new_tokens=max_target_length)
        else:
            generated_ids = paraphrase_model.generate(input_ids=input_ids, max_new_tokens=max_target_length)

    # Decode and return the generated answer
    paraphrased_answer = tokenizer.decode(generated_ids[0], skip_special_tokens=True)

    return paraphrased_answer


# Define your function to generate answers
def generate_answer(question, context, ground_truth, do_pretrained, do_natural, do_pretrained_natural):
    # Combine question and context
    input_text = f"question: {question} context: {context}"

    # Tokenize the input text
    input_ids = tokenizer(
        input_text,
        return_tensors="pt",
        padding="max_length",
        truncation=True,
        max_length=max_length,
    ).input_ids

    # Generate the answer
    with torch.no_grad():
        generated_ids = model.generate(input_ids=input_ids, max_new_tokens=max_target_length)

    # Decode and return the generated answer
    generated_answer = tokenizer.decode(generated_ids[0], skip_special_tokens=True)

    # Paraphrase answer
    paraphrased_answer = ""
    if do_natural:
        paraphrased_answer = paraphrase_answer(question, generated_answer)

    # Get pretrained model's answer
    pretrained_answer = ""
    if do_pretrained:
        with torch.no_grad():
            pretrained_generated_ids = pretrained_model.generate(input_ids=input_ids, max_new_tokens=max_target_length)
            pretrained_answer = tokenizer.decode(pretrained_generated_ids[0], skip_special_tokens=True)

    # Get pretrained model's natural answer
    pretrained_paraphrased_answer = ""
    if do_pretrained_natural:
        pretrained_paraphrased_answer = paraphrase_answer(question, generated_answer, True)

    return generated_answer, paraphrased_answer, pretrained_answer, pretrained_paraphrased_answer


# Define a function to list examples from the dataset
def list_examples():
    examples = []
    for example in dataset:
        context = example["context"]
        question = example["question"]
        answer = example["answer_text"]
        examples.append([question, context, answer, True, True, True])
    return examples


# Create a Gradio interface
iface = gr.Interface(
    fn=generate_answer,
    inputs=[
        Textbox(label="Question"),
        Textbox(label="Context"),
        Textbox(label="Ground truth"),
        Checkbox(label="Include pretrained model's answer"),
        Checkbox(label="Include natural answer"),
        Checkbox(label="Include pretrained model's natural answer")
    ],
    outputs=[
        Textbox(label="Generated Answer"),
        Textbox(label="Natural Answer"),
        Textbox(label="Pretrained Model's Answer"),
        Textbox(label="Pretrained Model's Natural Answer")
    ],
    examples=list_examples()
)

# Launch the Gradio interface
iface.launch()