legacy107 commited on
Commit
e861ca3
1 Parent(s): 75c11a1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -1
app.py CHANGED
@@ -1,3 +1,49 @@
1
  import gradio as gr
 
2
 
3
- gr.Interface.load("models/legacy107/flan-t5-large-bottleneck-adapter-cpgQA-unique").launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
 
4
+ # Load your fine-tuned model and tokenizer
5
+ model_name = "legacy107/flan-t5-large-bottleneck-adapter-cpgQA-unique"
6
+ tokenizer = AutoTokenizer.from_pretrained(model_name, device_map="auto")
7
+ model = AutoModelForSeq2SeqLM.from_pretrained(
8
+ model_checkpoint, device_map="auto"
9
+ )
10
+ model.set_active_adapters("question_answering")
11
+
12
+ max_length = 512
13
+ max_target_length = 128
14
+
15
+ # Define your function to generate answers
16
+ def generate_answer(question, context):
17
+ # Combine question and context
18
+ input_text = f"question: {question} context: {context}"
19
+
20
+ # Tokenize the input text
21
+ input_ids = tokenizer(
22
+ input_text,
23
+ return_tensors="pt",
24
+ padding="max_length",
25
+ truncation=True,
26
+ max_length=512,
27
+ ).input_ids
28
+
29
+ # Generate the answer
30
+ with torch.no_grad():
31
+ generated_ids = model.generate(input_ids, max_new_tokens=max_target_length)
32
+
33
+ # Decode and return the generated answer
34
+ generated_answer = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
35
+
36
+ return generated_answer
37
+
38
+ # Create a Gradio interface
39
+ iface = gr.Interface(
40
+ fn=generate_answer,
41
+ inputs=[
42
+ gr.inputs.Textbox(label="Question"),
43
+ gr.inputs.Textbox(label="Context")
44
+ ],
45
+ outputs=gr.outputs.Textbox(label="Generated Answer")
46
+ )
47
+
48
+ # Launch the Gradio interface
49
+ iface.launch()