|
import os |
|
|
|
import gradio as gr |
|
from qdrant_client import QdrantClient |
|
from transformers import ClapModel, ClapProcessor |
|
|
|
|
|
client = QdrantClient("https://ebe79742-e3ac-4d09-a2c6-63946024cc7a.us-east4-0.gcp.cloud.qdrant.io", api_key="_NnGLuSMH4Qwv-ancoFh88YvzuR7WbyidAorVOVQ_eMCbPhxTb2TSw") |
|
print("[INFO] Client created...") |
|
|
|
|
|
print("[INFO] Loading the model...") |
|
model_name = "laion/larger_clap_general" |
|
model = ClapModel.from_pretrained(model_name) |
|
processor = ClapProcessor.from_pretrained(model_name) |
|
|
|
|
|
max_results = 10 |
|
|
|
|
|
def sound_search(query): |
|
text_inputs = processor(text=query, return_tensors="pt") |
|
text_embed = model.get_text_features(**text_inputs)[0] |
|
|
|
hits = client.search( |
|
collection_name="demo_spaces_db", |
|
query_vector=text_embed, |
|
limit=max_results, |
|
) |
|
return [ |
|
gr.Audio( |
|
hit.payload['audio_path'], |
|
label=f"style: {hit.payload['style']} -- score: {hit.score}") |
|
for hit in hits |
|
] |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown( |
|
"""# Sound search database """ |
|
) |
|
inp = gr.Textbox(placeholder="What sound are you looking for ?") |
|
out = [gr.Audio(label=f"{x}") for x in range(max_results)] |
|
inp.change(sound_search, inp, out) |
|
|
|
demo.launch() |
|
|