import os import wget import math import numpy as np import librosa import librosa.display import matplotlib.pyplot as plt from scipy.signal import argrelextrema from scipy import linalg import torch from .motion_encoder import VAESKConv class L1div(object): def __init__(self): self.counter = 0 self.sum = 0 def run(self, results): self.counter += results.shape[0] mean = np.mean(results, 0) for i in range(results.shape[0]): results[i, :] = abs(results[i, :] - mean) sum_l1 = np.sum(results) self.sum += sum_l1 def avg(self): return self.sum/self.counter def reset(self): self.counter = 0 self.sum = 0 class SRGR(object): def __init__(self, threshold=0.1, joints=47, joint_dim=3): self.threshold = threshold self.pose_dimes = joints self.joint_dim = joint_dim self.counter = 0 self.sum = 0 def run(self, results, targets, semantic=None, verbose=False): if semantic is None: semantic = np.ones(results.shape[0]) avg_weight = 1.0 else: # srgr == 0.165 when all success, scale range to [0, 1] avg_weight = 0.165 results = results.reshape(-1, self.pose_dimes, self.joint_dim) targets = targets.reshape(-1, self.pose_dimes, self.joint_dim) semantic = semantic.reshape(-1) diff = np.linalg.norm(results-targets, axis=2) # T, J if verbose: print(diff) success = np.where(diff self.threshold) beat_vel = argrelextrema(vel[t_start:t_end, i], np.less, order=self.order) beat_vel_list = [j for j in beat_vel[0] if j in vel_mask[0]] beat_vel_all.append(np.array(beat_vel_list)) return beat_vel_all def load_data(self, wave, pose, t_start, t_end, pose_fps): onset_raw = self.load_audio(wave, t_start, t_end) beat_vel_all = self.load_pose(pose, t_start, t_end, pose_fps) return onset_raw, beat_vel_all def eval_random_pose(self, wave, pose, t_start, t_end, pose_fps, num_random=60): onset_raw = self.load_audio(wave, t_start, t_end) dur = t_end - t_start for i in range(num_random): beat_vel_all = self.load_pose(pose, i, i+dur, pose_fps) dis_all_b2a = self.calculate_align(onset_raw, beat_vel_all) print(f"{i}s: ", dis_all_b2a) @staticmethod def plot_onsets(audio, sr, onset_times_1, onset_times_2): fig, axarr = plt.subplots(2, 1, figsize=(10, 10), sharex=True) librosa.display.waveshow(audio, sr=sr, alpha=0.7, ax=axarr[0]) librosa.display.waveshow(audio, sr=sr, alpha=0.7, ax=axarr[1]) for onset in onset_times_1: axarr[0].axvline(onset, color='r', linestyle='--', alpha=0.9, label='Onset Method 1') axarr[0].legend() axarr[0].set(title='Onset Method 1', xlabel='', ylabel='Amplitude') for onset in onset_times_2: axarr[1].axvline(onset, color='b', linestyle='-', alpha=0.7, label='Onset Method 2') axarr[1].legend() axarr[1].set(title='Onset Method 2', xlabel='Time (s)', ylabel='Amplitude') handles, labels = plt.gca().get_legend_handles_labels() by_label = dict(zip(labels, handles)) plt.legend(by_label.values(), by_label.keys()) plt.title("Audio waveform with Onsets") plt.savefig("./onset.png", dpi=500) def audio_beat_vis(self, onset_raw, onset_bt, onset_bt_rms): fig, ax = plt.subplots(nrows=4, sharex=True) librosa.display.specshow(librosa.amplitude_to_db(self.S, ref=np.max), y_axis='log', x_axis='time', ax=ax[0]) ax[1].plot(self.times, self.oenv, label='Onset strength') ax[1].vlines(librosa.frames_to_time(onset_raw), 0, self.oenv.max(), label='Raw onsets', color='r') ax[1].legend() ax[2].vlines(librosa.frames_to_time(onset_bt), 0, self.oenv.max(), label='Backtracked', color='r') ax[2].legend() ax[3].vlines(librosa.frames_to_time(onset_bt_rms), 0, self.oenv.max(), label='Backtracked (RMS)', color='r') ax[3].legend() fig.savefig("./onset.png", dpi=500) @staticmethod def motion_frames2time(vel, offset, pose_fps): return vel / pose_fps + offset @staticmethod def GAHR(a, b, sigma): dis_all_b2a = 0 for b_each in b: l2_min = min(abs(a_each - b_each) for a_each in a) dis_all_b2a += math.exp(-(l2_min ** 2) / (2 * sigma ** 2)) return dis_all_b2a / len(b) @staticmethod def fix_directed_GAHR(a, b, sigma): a = BC.motion_frames2time(a, 0, 30) b = BC.motion_frames2time(b, 0, 30) a = [0] + a + [len(a)/30] b = [0] + b + [len(b)/30] return BC.GAHR(a, b, sigma) def calculate_align(self, onset_bt_rms, beat_vel, pose_fps=30): avg_dis_all_b2a_list = [] for its, beat_vel_each in enumerate(beat_vel): if its not in self.upper_body: continue if beat_vel_each.size == 0: avg_dis_all_b2a_list.append(0) continue pose_bt = self.motion_frames2time(beat_vel_each, 0, pose_fps) avg_dis_all_b2a_list.append(self.GAHR(pose_bt, onset_bt_rms, self.sigma)) self.counter += 1 self.sum += sum(avg_dis_all_b2a_list) / len(self.upper_body) def avg(self): return self.sum/self.counter def reset(self): self.counter = 0 self.sum = 0 class Arg(object): def __init__(self): self.vae_length = 240 self.vae_test_dim = 330 self.vae_test_len = 32 self.vae_layer = 4 self.vae_test_stride = 20 self.vae_grow = [1, 1, 2, 1] self.variational = False class FGD(object): def __init__(self, download_path="./emage/"): if download_path is not None: os.makedirs(download_path, exist_ok=True) model_file_path = os.path.join(download_path, "AESKConv_240_100.bin") smplx_model_dir = os.path.join(download_path, "smplx_models", "smplx") smplx_model_file_path = os.path.join(smplx_model_dir, "SMPLX_NEUTRAL_2020.npz") if not os.path.exists(model_file_path): print(f"Downloading {model_file_path}") wget.download("https://huggingface.co./spaces/H-Liu1997/EMAGE/resolve/main/EMAGE/test_sequences/weights/AESKConv_240_100.bin", model_file_path) os.makedirs(smplx_model_dir, exist_ok=True) if not os.path.exists(smplx_model_file_path): print(f"Downloading {smplx_model_file_path}") wget.download("https://huggingface.co./spaces/H-Liu1997/EMAGE/resolve/main/EMAGE/smplx_models/smplx/SMPLX_NEUTRAL_2020.npz", smplx_model_file_path) args = Arg() self.eval_model = VAESKConv(args) # Assumes LocalEncoder is defined elsewhere old_stat = torch.load(download_path+"AESKConv_240_100.bin")["model_state"] new_stat = {} for k, v in old_stat.items(): # If 'module.' is in the key, remove it new_key = k.replace('module.', '') if 'module.' in k else k new_stat[new_key] = v self.eval_model.load_state_dict(new_stat) self.eval_model.eval() if torch.cuda.is_available(): self.eval_model.cuda() self.pred_features = [] self.target_features = [] def update(self, pred, target): """ Accumulate the feature representations of predictions and targets. pred: torch.Tensor of predicted data target: torch.Tensor of target data """ self.pred_features.append(self.get_feature(pred).reshape(-1, 240)) self.target_features.append(self.get_feature(target).reshape(-1, 240)) def compute(self): """ Compute the Frechet Distance between the accumulated features. Returns: frechet_distance (float): The FVD score between prediction and target features. """ pred_features = np.concatenate(self.pred_features, axis=0) target_features = np.concatenate(self.target_features, axis=0) print(pred_features.shape, target_features.shape) return self.frechet_distance(pred_features, target_features) def reset(self): """ Reset the accumulated feature lists. """ self.pred_features = [] self.target_features = [] def get_feature(self, data): """ Pass the data through the evaluation model to get the feature representation. data: torch.Tensor of data (e.g., predictions or targets) Returns: feature: numpy array of extracted features """ with torch.no_grad(): if torch.cuda.is_available(): data = data.cuda() feature = self.eval_model.map2latent(data).cpu().numpy() return feature @staticmethod def frechet_distance(samples_A, samples_B): """ Compute the Frechet Distance between two sets of features. samples_A: numpy array of features from set A (e.g., predictions) samples_B: numpy array of features from set B (e.g., targets) Returns: frechet_dist (float): The Frechet Distance between the two feature sets. """ A_mu = np.mean(samples_A, axis=0) A_sigma = np.cov(samples_A, rowvar=False) B_mu = np.mean(samples_B, axis=0) B_sigma = np.cov(samples_B, rowvar=False) try: frechet_dist = FGD.calculate_frechet_distance(A_mu, A_sigma, B_mu, B_sigma) except ValueError: frechet_dist = 1e+10 return frechet_dist @staticmethod def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): """ Calculate the Frechet Distance between two multivariate Gaussians. mu1: Mean vector of the first distribution (generated data). sigma1: Covariance matrix of the first distribution. mu2: Mean vector of the second distribution (target data). sigma2: Covariance matrix of the second distribution. Returns: Frechet Distance (float) """ mu1 = np.atleast_1d(mu1) mu2 = np.atleast_1d(mu2) sigma1 = np.atleast_2d(sigma1) sigma2 = np.atleast_2d(sigma2) assert mu1.shape == mu2.shape, 'Training and test mean vectors have different lengths' assert sigma1.shape == sigma2.shape, 'Training and test covariances have different dimensions' diff = mu1 - mu2 # Product might be almost singular covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) # if not np.isfinite(covmean).all(): # msg = ('Frechet Distance calculation produces singular product; ' # 'adding %s to diagonal of covariance estimates') % eps # print(msg) offset = np.eye(sigma1.shape[0]) * eps covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) # Numerical error might give slight imaginary component if np.iscomplexobj(covmean): if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): m = np.max(np.abs(covmean.imag)) raise ValueError(f'Imaginary component {m}') covmean = covmean.real tr_covmean = np.trace(covmean) return (diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean)