|
import argparse |
|
import math |
|
import os |
|
import platform |
|
import subprocess |
|
|
|
import cv2 |
|
import numpy as np |
|
import torch |
|
from tqdm import tqdm |
|
|
|
import audio |
|
|
|
from models import Wav2Lip |
|
|
|
from batch_face import RetinaFace |
|
from time import time |
|
|
|
parser = argparse.ArgumentParser(description='Inference code to lip-sync videos in the wild using Wav2Lip models') |
|
|
|
parser.add_argument('--checkpoint_path', type=str, |
|
help='Name of saved checkpoint to load weights from', required=True) |
|
|
|
parser.add_argument('--face', type=str, |
|
help='Filepath of video/image that contains faces to use', required=True) |
|
parser.add_argument('--audio', type=str, |
|
help='Filepath of video/audio file to use as raw audio source', required=True) |
|
parser.add_argument('--outfile', type=str, help='Video path to save result. See default for an e.g.', |
|
default='results/result_voice.mp4') |
|
|
|
parser.add_argument('--static', type=bool, |
|
help='If True, then use only first video frame for inference', default=False) |
|
parser.add_argument('--fps', type=float, help='Can be specified only if input is a static image (default: 25)', |
|
default=25., required=False) |
|
|
|
parser.add_argument('--pads', nargs='+', type=int, default=[0, 10, 0, 0], |
|
help='Padding (top, bottom, left, right). Please adjust to include chin at least') |
|
|
|
parser.add_argument('--wav2lip_batch_size', type=int, help='Batch size for Wav2Lip model(s)', default=128) |
|
|
|
parser.add_argument('--resize_factor', default=1, type=int, |
|
help='Reduce the resolution by this factor. Sometimes, best results are obtained at 480p or 720p') |
|
|
|
parser.add_argument('--out_height', default=720, type=int, |
|
help='Output video height. Best results are obtained at 480 or 720') |
|
|
|
parser.add_argument('--crop', nargs='+', type=int, default=[0, -1, 0, -1], |
|
help='Crop video to a smaller region (top, bottom, left, right). Applied after resize_factor and rotate arg. ' |
|
'Useful if multiple face present. -1 implies the value will be auto-inferred based on height, width') |
|
|
|
parser.add_argument('--box', nargs='+', type=int, default=[-1, -1, -1, -1], |
|
help='Specify a constant bounding box for the face. Use only as a last resort if the face is not detected.' |
|
'Also, might work only if the face is not moving around much. Syntax: (top, bottom, left, right).') |
|
|
|
parser.add_argument('--rotate', default=False, action='store_true', |
|
help='Sometimes videos taken from a phone can be flipped 90deg. If true, will flip video right by 90deg.' |
|
'Use if you get a flipped result, despite feeding a normal looking video') |
|
|
|
parser.add_argument('--nosmooth', default=False, action='store_true', |
|
help='Prevent smoothing face detections over a short temporal window') |
|
|
|
|
|
def get_smoothened_boxes(boxes, T): |
|
for i in range(len(boxes)): |
|
if i + T > len(boxes): |
|
window = boxes[len(boxes) - T:] |
|
else: |
|
window = boxes[i : i + T] |
|
boxes[i] = np.mean(window, axis=0) |
|
return boxes |
|
|
|
def face_detect(images): |
|
results = [] |
|
pady1, pady2, padx1, padx2 = args.pads |
|
|
|
s = time() |
|
|
|
for image, rect in zip(images, face_rect(images)): |
|
if rect is None: |
|
cv2.imwrite('temp/faulty_frame.jpg', image) |
|
raise ValueError('Face not detected! Ensure the video contains a face in all the frames.') |
|
|
|
y1 = max(0, rect[1] - pady1) |
|
y2 = min(image.shape[0], rect[3] + pady2) |
|
x1 = max(0, rect[0] - padx1) |
|
x2 = min(image.shape[1], rect[2] + padx2) |
|
|
|
results.append([x1, y1, x2, y2]) |
|
|
|
print('face detect time:', time() - s) |
|
|
|
boxes = np.array(results) |
|
if not args.nosmooth: boxes = get_smoothened_boxes(boxes, T=5) |
|
results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)] |
|
|
|
return results |
|
|
|
|
|
def datagen(frames, mels): |
|
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], [] |
|
|
|
if args.box[0] == -1: |
|
if not args.static: |
|
face_det_results = face_detect(frames) |
|
else: |
|
face_det_results = face_detect([frames[0]]) |
|
else: |
|
print('Using the specified bounding box instead of face detection...') |
|
y1, y2, x1, x2 = args.box |
|
face_det_results = [[f[y1: y2, x1:x2], (y1, y2, x1, x2)] for f in frames] |
|
|
|
for i, m in enumerate(mels): |
|
idx = 0 if args.static else i%len(frames) |
|
frame_to_save = frames[idx].copy() |
|
face, coords = face_det_results[idx].copy() |
|
|
|
face = cv2.resize(face, (args.img_size, args.img_size)) |
|
|
|
img_batch.append(face) |
|
mel_batch.append(m) |
|
frame_batch.append(frame_to_save) |
|
coords_batch.append(coords) |
|
|
|
if len(img_batch) >= args.wav2lip_batch_size: |
|
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch) |
|
|
|
img_masked = img_batch.copy() |
|
img_masked[:, args.img_size//2:] = 0 |
|
|
|
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255. |
|
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]) |
|
|
|
yield img_batch, mel_batch, frame_batch, coords_batch |
|
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], [] |
|
|
|
if len(img_batch) > 0: |
|
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch) |
|
|
|
img_masked = img_batch.copy() |
|
img_masked[:, args.img_size//2:] = 0 |
|
|
|
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255. |
|
mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]) |
|
|
|
yield img_batch, mel_batch, frame_batch, coords_batch |
|
|
|
mel_step_size = 16 |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
print('Using {} for inference.'.format(device)) |
|
|
|
def _load(checkpoint_path): |
|
if device == 'cuda': |
|
checkpoint = torch.load(checkpoint_path) |
|
else: |
|
checkpoint = torch.load(checkpoint_path, |
|
map_location=lambda storage, loc: storage) |
|
return checkpoint |
|
|
|
def load_model(path): |
|
model = Wav2Lip() |
|
print("Load checkpoint from: {}".format(path)) |
|
checkpoint = _load(path) |
|
s = checkpoint["state_dict"] |
|
new_s = {} |
|
for k, v in s.items(): |
|
new_s[k.replace('module.', '')] = v |
|
model.load_state_dict(new_s) |
|
|
|
model = model.to(device) |
|
return model.eval() |
|
|
|
def main(): |
|
args.img_size = 96 |
|
|
|
if os.path.isfile(args.face) and args.face.split('.')[1] in ['jpg', 'png', 'jpeg']: |
|
args.static = True |
|
|
|
if not os.path.isfile(args.face): |
|
raise ValueError('--face argument must be a valid path to video/image file') |
|
|
|
elif args.face.split('.')[1] in ['jpg', 'png', 'jpeg']: |
|
full_frames = [cv2.imread(args.face)] |
|
fps = args.fps |
|
|
|
else: |
|
video_stream = cv2.VideoCapture(args.face) |
|
fps = video_stream.get(cv2.CAP_PROP_FPS) |
|
|
|
print('Reading video frames...') |
|
|
|
full_frames = [] |
|
while 1: |
|
still_reading, frame = video_stream.read() |
|
if not still_reading: |
|
video_stream.release() |
|
break |
|
|
|
aspect_ratio = frame.shape[1] / frame.shape[0] |
|
frame = cv2.resize(frame, (int(args.out_height * aspect_ratio), args.out_height)) |
|
|
|
|
|
|
|
if args.rotate: |
|
frame = cv2.rotate(frame, cv2.cv2.ROTATE_90_CLOCKWISE) |
|
|
|
y1, y2, x1, x2 = args.crop |
|
if x2 == -1: x2 = frame.shape[1] |
|
if y2 == -1: y2 = frame.shape[0] |
|
|
|
frame = frame[y1:y2, x1:x2] |
|
|
|
full_frames.append(frame) |
|
|
|
print ("Number of frames available for inference: "+str(len(full_frames))) |
|
|
|
if not args.audio.endswith('.wav'): |
|
print('Extracting raw audio...') |
|
|
|
|
|
subprocess.check_call([ |
|
"ffmpeg", "-y", |
|
"-i", args.audio, |
|
"temp/temp.wav", |
|
]) |
|
args.audio = 'temp/temp.wav' |
|
|
|
wav = audio.load_wav(args.audio, 16000) |
|
mel = audio.melspectrogram(wav) |
|
print(mel.shape) |
|
|
|
if np.isnan(mel.reshape(-1)).sum() > 0: |
|
raise ValueError('Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again') |
|
|
|
mel_chunks = [] |
|
mel_idx_multiplier = 80./fps |
|
i = 0 |
|
while 1: |
|
start_idx = int(i * mel_idx_multiplier) |
|
if start_idx + mel_step_size > len(mel[0]): |
|
mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:]) |
|
break |
|
mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size]) |
|
i += 1 |
|
|
|
print("Length of mel chunks: {}".format(len(mel_chunks))) |
|
|
|
full_frames = full_frames[:len(mel_chunks)] |
|
|
|
batch_size = args.wav2lip_batch_size |
|
gen = datagen(full_frames.copy(), mel_chunks) |
|
|
|
s = time() |
|
|
|
for i, (img_batch, mel_batch, frames, coords) in enumerate(tqdm(gen, |
|
total=int(np.ceil(float(len(mel_chunks))/batch_size)))): |
|
if i == 0: |
|
frame_h, frame_w = full_frames[0].shape[:-1] |
|
out = cv2.VideoWriter("./result.avi", |
|
cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h)) |
|
|
|
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device) |
|
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device) |
|
|
|
with torch.no_grad(): |
|
pred = model(mel_batch, img_batch) |
|
|
|
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255. |
|
|
|
for p, f, c in zip(pred, frames, coords): |
|
y1, y2, x1, x2 = c |
|
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1)) |
|
|
|
f[y1:y2, x1:x2] = p |
|
out.write(f) |
|
|
|
out.release() |
|
|
|
print("wav2lip prediction time:", time() - s) |
|
|
|
subprocess.check_call([ |
|
"ffmpeg", "-y", |
|
|
|
"-i", "./result.avi", |
|
"-i", args.audio, |
|
|
|
args.outfile, |
|
]) |
|
|
|
model = detector = detector_model = None |
|
|
|
def do_load(checkpoint_path): |
|
global model, detector, detector_model |
|
|
|
model = load_model(checkpoint_path) |
|
|
|
|
|
detector = RetinaFace(gpu_id=0, model_path="./Wav2Lip/checkpoints/mobilenet.pth", network="mobilenet") |
|
|
|
|
|
detector_model = detector.model |
|
|
|
print("Models loaded") |
|
|
|
|
|
face_batch_size = 64 * 8 |
|
|
|
def face_rect(images): |
|
num_batches = math.ceil(len(images) / face_batch_size) |
|
prev_ret = None |
|
for i in range(num_batches): |
|
batch = images[i * face_batch_size: (i + 1) * face_batch_size] |
|
all_faces = detector(batch) |
|
for faces in all_faces: |
|
if faces: |
|
box, landmarks, score = faces[0] |
|
prev_ret = tuple(map(int, box)) |
|
yield prev_ret |
|
|
|
|
|
if __name__ == '__main__': |
|
args = parser.parse_args() |
|
do_load(args.checkpoint_path) |
|
main() |
|
|