Spaces:
Runtime error
Runtime error
Commit
β’
3d9ac9f
1
Parent(s):
166b3f2
Update app.py
Browse files
app.py
CHANGED
@@ -24,7 +24,7 @@ pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell",
|
|
24 |
torch_dtype=torch.bfloat16)
|
25 |
|
26 |
pipe.transformer.to(memory_format=torch.channels_last)
|
27 |
-
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
28 |
#pipe.enable_model_cpu_offload()
|
29 |
clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))
|
30 |
|
@@ -35,13 +35,26 @@ controlnet_model = 'InstantX/FLUX.1-dev-Controlnet-Canny-alpha'
|
|
35 |
# pipe_controlnet = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16)
|
36 |
# t5_slider_controlnet = T5SliderFlux(sd_pipe=pipe_controlnet,device=torch.device("cuda"))
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
@spaces.GPU(duration=200)
|
39 |
def generate(concept_1, concept_2, scale, prompt, seed, recalc_directions, iterations, steps, interm_steps, guidance_scale,
|
40 |
x_concept_1, x_concept_2,
|
41 |
avg_diff_x,
|
42 |
img2img_type = None, img = None,
|
43 |
controlnet_scale= None, ip_adapter_scale=None,
|
44 |
-
|
45 |
):
|
46 |
slider_x = [concept_1, concept_2]
|
47 |
# check if avg diff for directions need to be re-calculated
|
@@ -58,7 +71,7 @@ def generate(concept_1, concept_2, scale, prompt, seed, recalc_directions, itera
|
|
58 |
high_scale = scale
|
59 |
low_scale = -1 * scale
|
60 |
for i in range(interm_steps):
|
61 |
-
cur_scale = low_scale + (high_scale - low_scale) * i / (
|
62 |
image = clip_slider.generate(prompt,
|
63 |
#guidance_scale=guidance_scale,
|
64 |
scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
@@ -69,15 +82,19 @@ def generate(concept_1, concept_2, scale, prompt, seed, recalc_directions, itera
|
|
69 |
|
70 |
comma_concepts_x = f"{slider_x[1]}, {slider_x[0]}"
|
71 |
|
|
|
|
|
|
|
|
|
72 |
avg_diff_x = avg_diff.cpu()
|
73 |
-
|
74 |
-
return gr.update(label=comma_concepts_x, interactive=True, value=scale), x_concept_1, x_concept_2, avg_diff_x, export_to_gif(images, "clip.gif", fps=5), canvas
|
75 |
|
76 |
@spaces.GPU
|
77 |
def update_scales(x,prompt,seed, steps, interm_steps, guidance_scale,
|
78 |
avg_diff_x,
|
79 |
img2img_type = None, img = None,
|
80 |
-
controlnet_scale= None, ip_adapter_scale=None,):
|
81 |
print("Hola", x)
|
82 |
avg_diff = avg_diff_x.cuda()
|
83 |
|
@@ -102,9 +119,22 @@ def update_scales(x,prompt,seed, steps, interm_steps, guidance_scale,
|
|
102 |
canvas = Image.new('RGB', (256*interm_steps, 256))
|
103 |
for i, im in enumerate(images):
|
104 |
canvas.paste(im.resize((256,256)), (256 * i, 0))
|
105 |
-
|
|
|
|
|
106 |
|
|
|
|
|
|
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
def reset_recalc_directions():
|
109 |
return True
|
110 |
|
@@ -160,6 +190,7 @@ with gr.Blocks() as demo:
|
|
160 |
|
161 |
x_concept_1 = gr.State("")
|
162 |
x_concept_2 = gr.State("")
|
|
|
163 |
# y_concept_1 = gr.State("")
|
164 |
# y_concept_2 = gr.State("")
|
165 |
|
@@ -181,9 +212,14 @@ with gr.Blocks() as demo:
|
|
181 |
submit = gr.Button("find directions")
|
182 |
with gr.Column():
|
183 |
with gr.Group(elem_id="group"):
|
|
|
|
|
184 |
#y = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False)
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
187 |
# with gr.Row():
|
188 |
# generate_butt = gr.Button("generate")
|
189 |
|
@@ -250,17 +286,17 @@ with gr.Blocks() as demo:
|
|
250 |
# inputs=[slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y],
|
251 |
# outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, output_image])
|
252 |
submit.click(fn=generate,
|
253 |
-
inputs=[concept_1, concept_2, x, prompt, seed, recalc_directions, iterations, steps, interm_steps, guidance_scale, x_concept_1, x_concept_2, avg_diff_x],
|
254 |
-
outputs=[x, x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq])
|
255 |
|
256 |
iterations.change(fn=reset_recalc_directions, outputs=[recalc_directions])
|
257 |
seed.change(fn=reset_recalc_directions, outputs=[recalc_directions])
|
258 |
-
x.release(fn=update_scales, inputs=[x, prompt, seed, steps, interm_steps, guidance_scale, avg_diff_x], outputs=[output_image, image_seq], trigger_mode='always_last')
|
259 |
# generate_butt_a.click(fn=update_scales, inputs=[x_a,y_a, prompt_a, seed_a, steps_a, guidance_scale_a, avg_diff_x, avg_diff_y, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale], outputs=[output_image_a])
|
260 |
# submit_a.click(fn=generate,
|
261 |
# inputs=[slider_x_a, slider_y_a, prompt_a, seed_a, iterations_a, steps_a, guidance_scale_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale],
|
262 |
# outputs=[x_a, y_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, output_image_a])
|
263 |
-
|
264 |
|
265 |
if __name__ == "__main__":
|
266 |
demo.launch()
|
|
|
24 |
torch_dtype=torch.bfloat16)
|
25 |
|
26 |
pipe.transformer.to(memory_format=torch.channels_last)
|
27 |
+
#pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
28 |
#pipe.enable_model_cpu_offload()
|
29 |
clip_slider = CLIPSliderFlux(pipe, device=torch.device("cuda"))
|
30 |
|
|
|
35 |
# pipe_controlnet = FluxControlNetPipeline.from_pretrained(base_model, controlnet=controlnet, torch_dtype=torch.bfloat16)
|
36 |
# t5_slider_controlnet = T5SliderFlux(sd_pipe=pipe_controlnet,device=torch.device("cuda"))
|
37 |
|
38 |
+
def convert_to_centered_scale(num):
|
39 |
+
if num <= 0:
|
40 |
+
raise ValueError("Input must be a positive integer")
|
41 |
+
|
42 |
+
if num % 2 == 0: # even
|
43 |
+
start = -(num // 2 - 1)
|
44 |
+
end = num // 2
|
45 |
+
else: # odd
|
46 |
+
start = -(num // 2)
|
47 |
+
end = num // 2
|
48 |
+
|
49 |
+
return tuple(range(start, end + 1))
|
50 |
+
|
51 |
@spaces.GPU(duration=200)
|
52 |
def generate(concept_1, concept_2, scale, prompt, seed, recalc_directions, iterations, steps, interm_steps, guidance_scale,
|
53 |
x_concept_1, x_concept_2,
|
54 |
avg_diff_x,
|
55 |
img2img_type = None, img = None,
|
56 |
controlnet_scale= None, ip_adapter_scale=None,
|
57 |
+
total_images
|
58 |
):
|
59 |
slider_x = [concept_1, concept_2]
|
60 |
# check if avg diff for directions need to be re-calculated
|
|
|
71 |
high_scale = scale
|
72 |
low_scale = -1 * scale
|
73 |
for i in range(interm_steps):
|
74 |
+
cur_scale = low_scale + (high_scale - low_scale) * i / (interm_steps - 1)
|
75 |
image = clip_slider.generate(prompt,
|
76 |
#guidance_scale=guidance_scale,
|
77 |
scale=cur_scale, seed=seed, num_inference_steps=steps, avg_diff=avg_diff)
|
|
|
82 |
|
83 |
comma_concepts_x = f"{slider_x[1]}, {slider_x[0]}"
|
84 |
|
85 |
+
scale_min = convert_to_centered_scale(interm_steps)[0]
|
86 |
+
scale_max = convert_to_centered_scale(interm_steps)[-1]
|
87 |
+
|
88 |
+
post_generation_slider_update = gr.update(minimum=scale_min, maximum=scale_max, visible=True)
|
89 |
avg_diff_x = avg_diff.cpu()
|
90 |
+
|
91 |
+
return gr.update(label=comma_concepts_x, interactive=True, value=scale), x_concept_1, x_concept_2, avg_diff_x, export_to_gif(images, "clip.gif", fps=5), canvas, images, post_generation_slider_update
|
92 |
|
93 |
@spaces.GPU
|
94 |
def update_scales(x,prompt,seed, steps, interm_steps, guidance_scale,
|
95 |
avg_diff_x,
|
96 |
img2img_type = None, img = None,
|
97 |
+
controlnet_scale= None, ip_adapter_scale=None, total_images):
|
98 |
print("Hola", x)
|
99 |
avg_diff = avg_diff_x.cuda()
|
100 |
|
|
|
119 |
canvas = Image.new('RGB', (256*interm_steps, 256))
|
120 |
for i, im in enumerate(images):
|
121 |
canvas.paste(im.resize((256,256)), (256 * i, 0))
|
122 |
+
|
123 |
+
scale_min = convert_to_centered_scale(interm_steps)[0]
|
124 |
+
scale_max = convert_to_centered_scale(interm_steps)[-1]
|
125 |
|
126 |
+
post_generation_slider_update = gr.update(minimum=scale_min, maximum=scale_max, visible=True)
|
127 |
+
|
128 |
+
return export_to_gif(images, "clip.gif", fps=5), canvas, images, post_generation_slider_update
|
129 |
|
130 |
+
def update_pre_generated_images(slider_value, total_images):
|
131 |
+
number_images = len(total_images)
|
132 |
+
if(number_images > 0):
|
133 |
+
scale_tuple = convert_to_centered_scale(number_images)
|
134 |
+
return total_images[scale_tuple.index(slider_value)]
|
135 |
+
else:
|
136 |
+
return None
|
137 |
+
|
138 |
def reset_recalc_directions():
|
139 |
return True
|
140 |
|
|
|
190 |
|
191 |
x_concept_1 = gr.State("")
|
192 |
x_concept_2 = gr.State("")
|
193 |
+
total_images = gr.State([])
|
194 |
# y_concept_1 = gr.State("")
|
195 |
# y_concept_2 = gr.State("")
|
196 |
|
|
|
212 |
submit = gr.Button("find directions")
|
213 |
with gr.Column():
|
214 |
with gr.Group(elem_id="group"):
|
215 |
+
post_generation_image = gr.Image(label="Generated Images")
|
216 |
+
post_generation_slider = gr.Slider(minimum=-2, maximum=2, value=0, step=1, interactive=False)
|
217 |
#y = gr.Slider(minimum=-10, value=0, maximum=10, elem_id="y", interactive=False)
|
218 |
+
with gr.Row():
|
219 |
+
with gr.Column(scale=4):
|
220 |
+
output_image = gr.Image(elem_id="image_out", label="Gif")
|
221 |
+
with gr.Column(scale=1):
|
222 |
+
image_seq = gr.Image(label="Strip")
|
223 |
# with gr.Row():
|
224 |
# generate_butt = gr.Button("generate")
|
225 |
|
|
|
286 |
# inputs=[slider_x, slider_y, prompt, seed, iterations, steps, guidance_scale, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y],
|
287 |
# outputs=[x, y, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, output_image])
|
288 |
submit.click(fn=generate,
|
289 |
+
inputs=[concept_1, concept_2, x, prompt, seed, recalc_directions, iterations, steps, interm_steps, guidance_scale, x_concept_1, x_concept_2, avg_diff_x, total_images],
|
290 |
+
outputs=[x, x_concept_1, x_concept_2, avg_diff_x, output_image, image_seq, total_images, post_generation_slider])
|
291 |
|
292 |
iterations.change(fn=reset_recalc_directions, outputs=[recalc_directions])
|
293 |
seed.change(fn=reset_recalc_directions, outputs=[recalc_directions])
|
294 |
+
x.release(fn=update_scales, inputs=[x, prompt, seed, steps, interm_steps, guidance_scale, avg_diff_x, total_images], outputs=[output_image, image_seq, total_images, post_generation_slider], trigger_mode='always_last')
|
295 |
# generate_butt_a.click(fn=update_scales, inputs=[x_a,y_a, prompt_a, seed_a, steps_a, guidance_scale_a, avg_diff_x, avg_diff_y, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale], outputs=[output_image_a])
|
296 |
# submit_a.click(fn=generate,
|
297 |
# inputs=[slider_x_a, slider_y_a, prompt_a, seed_a, iterations_a, steps_a, guidance_scale_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, img2img_type, image, controlnet_conditioning_scale, ip_adapter_scale],
|
298 |
# outputs=[x_a, y_a, x_concept_1, x_concept_2, y_concept_1, y_concept_2, avg_diff_x, avg_diff_y, output_image_a])
|
299 |
+
post_generation_slider.release(fn=update_pre_generated_images, inputs=[post_generation_slider, total_images], outputs=[post_generation_image], trigger_mode='always_last')
|
300 |
|
301 |
if __name__ == "__main__":
|
302 |
demo.launch()
|