Iker's picture
Upload app.py
e142967
raw
history blame
4.02 kB
import streamlit as st
import os
import io
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration
import time
import json
from typing import List
import torch
import random
if torch.cuda.is_available():
device = torch.device("cuda:0")
else:
device = torch.device("cpu")
logging.warning("GPU not found, using CPU, translation will be very slow.")
st.cache(suppress_st_warning=True, allow_output_mutation=True)
st.set_page_config(page_title="M2M100 Translator")
lang_id = {
"Afrikaans": "af",
"Amharic": "am",
"Arabic": "ar",
"Asturian": "ast",
"Azerbaijani": "az",
"Bashkir": "ba",
"Belarusian": "be",
"Bulgarian": "bg",
"Bengali": "bn",
"Breton": "br",
"Bosnian": "bs",
"Catalan": "ca",
"Cebuano": "ceb",
"Czech": "cs",
"Welsh": "cy",
"Danish": "da",
"German": "de",
"Greeek": "el",
"English": "en",
"Spanish": "es",
"Estonian": "et",
"Persian": "fa",
"Fulah": "ff",
"Finnish": "fi",
"French": "fr",
"Western Frisian": "fy",
"Irish": "ga",
"Gaelic": "gd",
"Galician": "gl",
"Gujarati": "gu",
"Hausa": "ha",
"Hebrew": "he",
"Hindi": "hi",
"Croatian": "hr",
"Haitian": "ht",
"Hungarian": "hu",
"Armenian": "hy",
"Indonesian": "id",
"Igbo": "ig",
"Iloko": "ilo",
"Icelandic": "is",
"Italian": "it",
"Japanese": "ja",
"Javanese": "jv",
"Georgian": "ka",
"Kazakh": "kk",
"Central Khmer": "km",
"Kannada": "kn",
"Korean": "ko",
"Luxembourgish": "lb",
"Ganda": "lg",
"Lingala": "ln",
"Lao": "lo",
"Lithuanian": "lt",
"Latvian": "lv",
"Malagasy": "mg",
"Macedonian": "mk",
"Malayalam": "ml",
"Mongolian": "mn",
"Marathi": "mr",
"Malay": "ms",
"Burmese": "my",
"Nepali": "ne",
"Dutch": "nl",
"Norwegian": "no",
"Northern Sotho": "ns",
"Occitan": "oc",
"Oriya": "or",
"Panjabi": "pa",
"Polish": "pl",
"Pushto": "ps",
"Portuguese": "pt",
"Romanian": "ro",
"Russian": "ru",
"Sindhi": "sd",
"Sinhala": "si",
"Slovak": "sk",
"Slovenian": "sl",
"Somali": "so",
"Albanian": "sq",
"Serbian": "sr",
"Swati": "ss",
"Sundanese": "su",
"Swedish": "sv",
"Swahili": "sw",
"Tamil": "ta",
"Thai": "th",
"Tagalog": "tl",
"Tswana": "tn",
"Turkish": "tr",
"Ukrainian": "uk",
"Urdu": "ur",
"Uzbek": "uz",
"Vietnamese": "vi",
"Wolof": "wo",
"Xhosa": "xh",
"Yiddish": "yi",
"Yoruba": "yo",
"Chinese": "zh",
"Zulu": "zu",
}
@st.cache(suppress_st_warning=True, allow_output_mutation=True)
def load_model(
pretrained_model: str = "facebook/m2m100_418M",
cache_dir: str = "models/",
):
tokenizer = M2M100Tokenizer.from_pretrained(pretrained_model, cache_dir=cache_dir)
model = M2M100ForConditionalGeneration.from_pretrained(
pretrained_model, cache_dir=cache_dir
).to(device)
model.eval()
return tokenizer, model
st.title("M2M100 Translator")
user_input: str = st.text_area(
"Input text",
height=200,
max_chars=5120,
)
source_lang = st.selectbox(label="Source language", options=list(lang_id.keys()))
target_lang = st.selectbox(label="Target language", options=list(lang_id.keys()))
if st.button("Run"):
time_start = time.time()
tokenizer, model = load_model()
src_lang = lang_id[source_lang]
trg_lang = lang_id[target_lang]
tokenizer.src_lang = src_lang
with torch.no_grad():
encoded_input = tokenizer(user_input, return_tensors="pt").to(device)
generated_tokens = model.generate(
**encoded_input, forced_bos_token_id=tokenizer.get_lang_id(trg_lang)
)
translated_text = tokenizer.batch_decode(
generated_tokens, skip_special_tokens=True
)[0]
time_end = time.time()
st.success(translated_text)
st.write(f"Computation time: {round((time_end-time_start),3)} segs")