pragnakalp commited on
Commit
2b0083b
1 Parent(s): 7abba8a

upload file to solve numpy float related error

Browse files
Files changed (1) hide show
  1. util.py +354 -0
util.py ADDED
@@ -0,0 +1,354 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch import nn
2
+
3
+ import torch.nn.functional as F
4
+ import torch
5
+ import cv2
6
+ import numpy as np
7
+
8
+ from models.resnet import resnet34
9
+ from models.layers.residual import Res2dBlock,Res1dBlock,DownRes2dBlock
10
+
11
+ from sync_batchnorm import SynchronizedBatchNorm2d as BatchNorm2d
12
+
13
+
14
+ def myres2Dblock(indim,outdim,k_size = 3,padding = 1, normalize = "batch",nonlinearity = "relu",order = "NACNAC"):
15
+ return Res2dBlock(indim,outdim,k_size,padding,activation_norm_type=normalize,nonlinearity=nonlinearity,inplace_nonlinearity=True,order = order)
16
+
17
+ def myres1Dblock(indim,outdim,k_size = 3,padding = 1, normalize = "batch",nonlinearity = "relu",order = "NACNAC"):
18
+ return Res1dBlock(indim,outdim,k_size,padding,activation_norm_type=normalize,nonlinearity=nonlinearity,inplace_nonlinearity=True,order = order)
19
+
20
+ def mydownres2Dblock(indim,outdim,k_size = 3,padding = 1, normalize = "batch",nonlinearity = "leakyrelu",order = "NACNAC"):
21
+ return DownRes2dBlock(indim,outdim,k_size,padding=padding,activation_norm_type=normalize,nonlinearity=nonlinearity,inplace_nonlinearity=True,order = order)
22
+
23
+ def gaussian2kp(heatmap):
24
+ """
25
+ Extract the mean and from a heatmap
26
+ """
27
+ shape = heatmap.shape
28
+ heatmap = heatmap.unsqueeze(-1)
29
+ grid = make_coordinate_grid(shape[2:], heatmap.type()).unsqueeze_(0).unsqueeze_(0)
30
+ value = (heatmap * grid).sum(dim=(2, 3))
31
+ kp = {'value': value}
32
+
33
+ return kp
34
+
35
+ def kp2gaussian(kp, spatial_size, kp_variance):
36
+ """
37
+ Transform a keypoint into gaussian like representation
38
+ """
39
+ mean = kp['value'] #bs*numkp*2
40
+
41
+ coordinate_grid = make_coordinate_grid(spatial_size, mean.type()) #h*w*2
42
+ number_of_leading_dimensions = len(mean.shape) - 1
43
+ shape = (1,) * number_of_leading_dimensions + coordinate_grid.shape #1*1*h*w*2
44
+ coordinate_grid = coordinate_grid.view(*shape)
45
+ repeats = mean.shape[:number_of_leading_dimensions] + (1, 1, 1)
46
+ coordinate_grid = coordinate_grid.repeat(*repeats) #bs*numkp*h*w*2
47
+
48
+ # Preprocess kp shape
49
+ shape = mean.shape[:number_of_leading_dimensions] + (1, 1, 2)
50
+ mean = mean.view(*shape)
51
+
52
+ mean_sub = (coordinate_grid - mean)
53
+
54
+ out = torch.exp(-0.5 * (mean_sub ** 2).sum(-1) / kp_variance)
55
+
56
+ return out
57
+
58
+
59
+ def make_coordinate_grid(spatial_size, type):
60
+ """
61
+ Create a meshgrid [-1,1] x [-1,1] of given spatial_size.
62
+ """
63
+ h, w = spatial_size
64
+ x = torch.arange(w).type(type)
65
+ y = torch.arange(h).type(type)
66
+
67
+ x = (2 * (x / (w - 1)) - 1)
68
+ y = (2 * (y / (h - 1)) - 1)
69
+
70
+ yy = y.view(-1, 1).repeat(1, w)
71
+ xx = x.view(1, -1).repeat(h, 1)
72
+
73
+ meshed = torch.cat([xx.unsqueeze_(2), yy.unsqueeze_(2)], 2)
74
+
75
+ return meshed
76
+
77
+
78
+ class ResBlock2d(nn.Module):
79
+ """
80
+ Res block, preserve spatial resolution.
81
+ """
82
+
83
+ def __init__(self, in_features, kernel_size, padding):
84
+ super(ResBlock2d, self).__init__()
85
+ self.conv1 = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size,
86
+ padding=padding)
87
+ self.conv2 = nn.Conv2d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size,
88
+ padding=padding)
89
+ self.norm1 = BatchNorm2d(in_features, affine=True)
90
+ self.norm2 = BatchNorm2d(in_features, affine=True)
91
+
92
+ def forward(self, x):
93
+ out = self.norm1(x)
94
+ out = F.relu(out,inplace=True)
95
+ out = self.conv1(out)
96
+ out = self.norm2(out)
97
+ out = F.relu(out,inplace=True)
98
+ out = self.conv2(out)
99
+ out += x
100
+ return out
101
+
102
+
103
+ class UpBlock2d(nn.Module):
104
+ """
105
+ Upsampling block for use in decoder.
106
+ """
107
+
108
+ def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
109
+ super(UpBlock2d, self).__init__()
110
+
111
+ self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
112
+ padding=padding, groups=groups)
113
+ self.norm = BatchNorm2d(out_features, affine=True)
114
+
115
+ def forward(self, x):
116
+ out = F.interpolate(x, scale_factor=2)
117
+ del x
118
+ out = self.conv(out)
119
+ out = self.norm(out)
120
+ out = F.relu(out,inplace=True)
121
+ return out
122
+
123
+
124
+ class DownBlock2d(nn.Module):
125
+ """
126
+ Downsampling block for use in encoder.
127
+ """
128
+
129
+ def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1):
130
+ super(DownBlock2d, self).__init__()
131
+ self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size,
132
+ padding=padding, groups=groups)
133
+ self.norm = BatchNorm2d(out_features, affine=True)
134
+ self.pool = nn.AvgPool2d(kernel_size=(2, 2))
135
+
136
+ def forward(self, x):
137
+ out = self.conv(x)
138
+ del x
139
+ out = self.norm(out)
140
+ out = F.relu(out,inplace=True)
141
+ out = self.pool(out)
142
+ return out
143
+
144
+
145
+ class SameBlock2d(nn.Module):
146
+ """
147
+ Simple block, preserve spatial resolution.
148
+ """
149
+
150
+ def __init__(self, in_features, out_features, groups=1, kernel_size=3, padding=1):
151
+ super(SameBlock2d, self).__init__()
152
+ self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features,
153
+ kernel_size=kernel_size, padding=padding, groups=groups)
154
+ self.norm = BatchNorm2d(out_features, affine=True)
155
+
156
+ def forward(self, x):
157
+ out = self.conv(x)
158
+ out = self.norm(out)
159
+ out = F.relu(out,inplace=True)
160
+ return out
161
+
162
+
163
+ class Encoder(nn.Module):
164
+ """
165
+ Hourglass Encoder
166
+ """
167
+
168
+ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
169
+ super(Encoder, self).__init__()
170
+
171
+ down_blocks = []
172
+ for i in range(num_blocks):
173
+ down_blocks.append(DownBlock2d(in_features if i == 0 else min(max_features, block_expansion * (2 ** i)),
174
+ min(max_features, block_expansion * (2 ** (i + 1))),
175
+ kernel_size=3, padding=1))
176
+ self.down_blocks = nn.ModuleList(down_blocks)
177
+
178
+ def forward(self, x):
179
+ outs = [x]
180
+ for down_block in self.down_blocks:
181
+ outs.append(down_block(outs[-1]))
182
+ return outs
183
+
184
+ class Decoder(nn.Module):
185
+ """
186
+ Hourglass Decoder
187
+ """
188
+
189
+ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
190
+ super(Decoder, self).__init__()
191
+
192
+ up_blocks = []
193
+
194
+ for i in range(num_blocks)[::-1]:
195
+ in_filters = (1 if i == num_blocks - 1 else 2) * min(max_features, block_expansion * (2 ** (i + 1)))
196
+ out_filters = min(max_features, block_expansion * (2 ** i))
197
+ up_blocks.append(UpBlock2d(in_filters, out_filters, kernel_size=3, padding=1))
198
+
199
+ self.up_blocks = nn.ModuleList(up_blocks)
200
+ self.out_filters = block_expansion + in_features
201
+
202
+ def forward(self, x):
203
+ out = x.pop()
204
+ for up_block in self.up_blocks:
205
+ out = up_block(out)
206
+ skip = x.pop()
207
+ out = torch.cat([out, skip], dim=1)
208
+ return out
209
+
210
+ class Hourglass(nn.Module):
211
+ """
212
+ Hourglass architecture.
213
+ """
214
+
215
+ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256):
216
+ super(Hourglass, self).__init__()
217
+ self.encoder = Encoder(block_expansion, in_features, num_blocks, max_features)
218
+ self.decoder = Decoder(block_expansion, in_features, num_blocks, max_features)
219
+ self.out_filters = self.decoder.out_filters
220
+
221
+ def forward(self, x):
222
+ return self.decoder(self.encoder(x))
223
+
224
+ class AntiAliasInterpolation2d(nn.Module):
225
+ """
226
+ Band-limited downsampling, for better preservation of the input signal.
227
+ """
228
+ def __init__(self, channels, scale):
229
+ super(AntiAliasInterpolation2d, self).__init__()
230
+ sigma = (1 / scale - 1) / 2
231
+ kernel_size = 2 * round(sigma * 4) + 1
232
+ self.ka = kernel_size // 2
233
+ self.kb = self.ka - 1 if kernel_size % 2 == 0 else self.ka
234
+
235
+
236
+ kernel_size = [kernel_size, kernel_size]
237
+ sigma = [sigma, sigma]
238
+ # The gaussian kernel is the product of the
239
+ # gaussian function of each dimension.
240
+ kernel = 1
241
+ meshgrids = torch.meshgrid(
242
+ [
243
+ torch.arange(size, dtype=torch.float32)
244
+ for size in kernel_size
245
+ ]
246
+ )
247
+ for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
248
+ mean = (size - 1) / 2
249
+ kernel *= torch.exp(-(mgrid - mean) ** 2 / (2 * std ** 2))
250
+
251
+ # Make sure sum of values in gaussian kernel equals 1.
252
+ kernel = kernel / torch.sum(kernel)
253
+ # Reshape to depthwise convolutional weight
254
+ kernel = kernel.view(1, 1, *kernel.size())
255
+ kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1))
256
+
257
+ self.register_buffer('weight', kernel)
258
+ self.groups = channels
259
+ self.scale = scale
260
+
261
+ def forward(self, input):
262
+ if self.scale == 1.0:
263
+ return input
264
+
265
+ out = F.pad(input, (self.ka, self.kb, self.ka, self.kb))
266
+ out = F.conv2d(out, weight=self.weight, groups=self.groups)
267
+ out = F.interpolate(out, scale_factor=(self.scale, self.scale))
268
+
269
+ return out
270
+
271
+ def draw_annotation_box( image, rotation_vector, translation_vector, color=(255, 255, 255), line_width=2):
272
+ """Draw a 3D box as annotation of pose"""
273
+
274
+ camera_matrix = np.array(
275
+ [[233.333, 0, 128],
276
+ [0, 233.333, 128],
277
+ [0, 0, 1]], dtype="double")
278
+
279
+ dist_coeefs = np.zeros((4, 1))
280
+
281
+ point_3d = []
282
+ rear_size = 75
283
+ rear_depth = 0
284
+ point_3d.append((-rear_size, -rear_size, rear_depth))
285
+ point_3d.append((-rear_size, rear_size, rear_depth))
286
+ point_3d.append((rear_size, rear_size, rear_depth))
287
+ point_3d.append((rear_size, -rear_size, rear_depth))
288
+ point_3d.append((-rear_size, -rear_size, rear_depth))
289
+
290
+ front_size = 100
291
+ front_depth = 100
292
+ point_3d.append((-front_size, -front_size, front_depth))
293
+ point_3d.append((-front_size, front_size, front_depth))
294
+ point_3d.append((front_size, front_size, front_depth))
295
+ point_3d.append((front_size, -front_size, front_depth))
296
+ point_3d.append((-front_size, -front_size, front_depth))
297
+ point_3d = np.array(point_3d, dtype=np.float64).reshape(-1, 3)
298
+
299
+ # Map to 2d image points
300
+ (point_2d, _) = cv2.projectPoints(point_3d,
301
+ rotation_vector,
302
+ translation_vector,
303
+ camera_matrix,
304
+ dist_coeefs)
305
+ point_2d = np.int32(point_2d.reshape(-1, 2))
306
+
307
+ # Draw all the lines
308
+ cv2.polylines(image, [point_2d], True, color, line_width, cv2.LINE_AA)
309
+ cv2.line(image, tuple(point_2d[1]), tuple(
310
+ point_2d[6]), color, line_width, cv2.LINE_AA)
311
+ cv2.line(image, tuple(point_2d[2]), tuple(
312
+ point_2d[7]), color, line_width, cv2.LINE_AA)
313
+ cv2.line(image, tuple(point_2d[3]), tuple(
314
+ point_2d[8]), color, line_width, cv2.LINE_AA)
315
+
316
+
317
+
318
+ class up_sample(nn.Module):
319
+ def __init__(self, scale_factor):
320
+ super(up_sample, self).__init__()
321
+ self.interp = nn.functional.interpolate
322
+ self.scale_factor = scale_factor
323
+
324
+ def forward(self, x):
325
+ x = self.interp(x, scale_factor=self.scale_factor,mode = 'linear',align_corners = True)
326
+ return x
327
+
328
+
329
+
330
+ class MyResNet34(nn.Module):
331
+ def __init__(self,embedding_dim,input_channel = 3):
332
+ super(MyResNet34, self).__init__()
333
+ self.resnet = resnet34(norm_layer = BatchNorm2d,num_classes=embedding_dim,input_channel = input_channel)
334
+ def forward(self, x):
335
+ return self.resnet(x)
336
+
337
+
338
+
339
+ class ImagePyramide(torch.nn.Module):
340
+ """
341
+ Create image pyramide for computing pyramide perceptual loss. See Sec 3.3
342
+ """
343
+ def __init__(self, scales, num_channels):
344
+ super(ImagePyramide, self).__init__()
345
+ downs = {}
346
+ for scale in scales:
347
+ downs[str(scale).replace('.', '-')] = AntiAliasInterpolation2d(num_channels, scale)
348
+ self.downs = nn.ModuleDict(downs)
349
+
350
+ def forward(self, x):
351
+ out_dict = {}
352
+ for scale, down_module in self.downs.items():
353
+ out_dict['prediction_' + str(scale).replace('-', '.')] = down_module(x)
354
+ return out_dict