la04 commited on
Commit
356a1b2
·
verified ·
1 Parent(s): 460e032

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +59 -47
app.py CHANGED
@@ -1,64 +1,76 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
 
18
  messages = [{"role": "system", "content": system_message}]
19
-
20
  for val in history:
21
  if val[0]:
22
  messages.append({"role": "user", "content": val[0]})
23
  if val[1]:
24
  messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
27
-
 
28
  response = ""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ from langchain.vectorstores import FAISS
4
+ from langchain.embeddings import HuggingFaceEmbeddings
5
+ from langchain.text_splitter import CharacterTextSplitter
6
+ from langchain.document_loaders import TextLoader
7
 
 
 
 
8
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
9
 
10
+ # Funktion zum Laden und Indexieren eines Dokuments
11
+ def load_and_index_document(file_path: str):
12
+ loader = TextLoader(file_path)
13
+ documents = loader.load()
14
+ text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
15
+ chunks = text_splitter.split_documents(documents)
16
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
17
+ vector_store = FAISS.from_documents(chunks, embeddings)
18
+ return vector_store
19
 
20
+ # Antwortfunktion für den RAG-Chatbot
21
+ def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, file):
22
+ # Dateipfad des hochgeladenen Dokuments
23
+ file_path = file.name
24
+
25
+ # Dokument laden und indexieren
26
+ vector_store = load_and_index_document(file_path)
27
+
28
+ # Historie und Systemnachricht aufbereiten
29
  messages = [{"role": "system", "content": system_message}]
 
30
  for val in history:
31
  if val[0]:
32
  messages.append({"role": "user", "content": val[0]})
33
  if val[1]:
34
  messages.append({"role": "assistant", "content": val[1]})
35
+
36
+ # Abruf relevanter Abschnitte aus dem Dokument
37
+ docs = vector_store.similarity_search(message, k=3) # Abrufen von 3 relevanten Dokumentabschnitten
38
+ context = "\n".join([doc.page_content for doc in docs])
39
 
40
+ # Nachricht an das Modell
41
+ full_message = f"{context}\n\nUser: {message}\nAssistant:"
42
+
43
  response = ""
44
+ try:
45
+ # Generierung der Antwort
46
+ for message in client.chat_completion(
47
+ [{"role": "system", "content": system_message}, {"role": "user", "content": full_message}],
48
+ max_tokens=max_tokens,
49
+ stream=True,
50
+ temperature=temperature,
51
+ top_p=top_p,
52
+ ):
53
+ token = message.choices[0].delta.content
54
+ response += token
55
+ yield response
56
+ except Exception as e:
57
+ yield f"An error occurred: {str(e)}"
58
 
59
+ # Gradio-UI erstellen
60
+ def create_gradio_ui():
61
+ demo = gr.Interface(
62
+ fn=respond,
63
+ inputs=[
64
+ gr.Textbox(value="You are a helpful assistant.", label="System message"),
65
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
66
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
67
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
68
+ gr.File(label="Upload Document") # Datei-Upload
69
+ ],
70
+ live=True
71
+ )
72
+ return demo
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
 
74
  if __name__ == "__main__":
75
+ ui = create_gradio_ui()
76
+ ui.launch()