# -*- coding:utf-8 -*- import argparse import os import traceback from tqdm import tqdm # from funasr.utils import version_checker # version_checker.check_for_update = lambda: None from funasr import AutoModel def only_asr(input_file): try: text = model.generate(input=input_file)[0]["text"] except: text = '' print(traceback.format_exc()) return text def execute_asr(input_folder, output_folder, model_size, language): input_file_names = os.listdir(input_folder) input_file_names.sort() output = [] output_file_name = os.path.basename(input_folder) for file_name in tqdm(input_file_names): try: print(file_name) file_path = os.path.join(input_folder, file_name) text = model.generate(input=file_path)[0]["text"] output.append(f"{file_path}|{output_file_name}|{language.upper()}|{text}") except: print(traceback.format_exc()) output_folder = output_folder or "output/asr_opt" os.makedirs(output_folder, exist_ok=True) output_file_path = os.path.abspath(f'{output_folder}/{output_file_name}.list') with open(output_file_path, "w", encoding="utf-8") as f: f.write("\n".join(output)) print(f"ASR 任务完成->标注文件路径: {output_file_path}\n") return output_file_path parser = argparse.ArgumentParser() parser.add_argument("-i", "--input_folder", type=str, required=True, help="Path to the folder containing WAV files.") parser.add_argument("-o", "--output_folder", type=str, required=True, help="Output folder to store transcriptions.") parser.add_argument("-s", "--model_size", type=str, default='large', help="Model Size of FunASR is Large") parser.add_argument("-l", "--language", type=str, default='zh', choices=['zh','yue','auto'], help="Language of the audio files.") parser.add_argument("-p", "--precision", type=str, default='float16', choices=['float16','float32'], help="fp16 or fp32")#还没接入 cmd = parser.parse_args() path_vad = 'tools/asr/models/speech_fsmn_vad_zh-cn-16k-common-pytorch' path_punc = 'tools/asr/models/punc_ct-transformer_zh-cn-common-vocab272727-pytorch' path_vad = path_vad if os.path.exists(path_vad) else "iic/speech_fsmn_vad_zh-cn-16k-common-pytorch" path_punc = path_punc if os.path.exists(path_punc) else "iic/punc_ct-transformer_zh-cn-common-vocab272727-pytorch" vad_model_revision=punc_model_revision="v2.0.4" if(cmd.language=="zh"): path_asr = 'tools/asr/models/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch' path_asr = path_asr if os.path.exists(path_asr) else "iic/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch" model_revision="v2.0.4" else: path_asr = 'tools/asr/models/speech_UniASR_asr_2pass-cantonese-CHS-16k-common-vocab1468-tensorflow1-online' path_asr = path_asr if os.path.exists(path_asr) else "iic/speech_UniASR_asr_2pass-cantonese-CHS-16k-common-vocab1468-tensorflow1-online" model_revision="master" path_vad=path_punc=vad_model_revision=punc_model_revision=None###友情提示:粤语带VAD识别可能会有少量shape不对报错的,但是不带VAD可以.不带vad只能分阶段单独加标点。不过标点模型对粤语效果真的不行… model = AutoModel( model=path_asr, model_revision=model_revision, vad_model=path_vad, vad_model_revision=vad_model_revision, punc_model=path_punc, punc_model_revision=punc_model_revision, ) if __name__ == '__main__': execute_asr( input_folder = cmd.input_folder, output_folder = cmd.output_folder, model_size = cmd.model_size, language = cmd.language, )