''' 按中英混合识别 按日英混合识别 多语种启动切分识别语种 全部按中文识别 全部按英文识别 全部按日文识别 ''' import logging import traceback logging.getLogger("markdown_it").setLevel(logging.ERROR) logging.getLogger("urllib3").setLevel(logging.ERROR) logging.getLogger("httpcore").setLevel(logging.ERROR) logging.getLogger("httpx").setLevel(logging.ERROR) logging.getLogger("asyncio").setLevel(logging.ERROR) logging.getLogger("charset_normalizer").setLevel(logging.ERROR) logging.getLogger("torchaudio._extension").setLevel(logging.ERROR) logging.getLogger("multipart.multipart").setLevel(logging.ERROR) import LangSegment, os, re, sys, json import pdb import spaces import torch version="v2"#os.environ.get("version","v2") cnhubert_base_path = os.environ.get( "cnhubert_base_path", "pretrained_models/chinese-hubert-base" ) bert_path = os.environ.get( "bert_path", "pretrained_models/chinese-roberta-wwm-ext-large" ) punctuation = set(['!', '?', '…', ',', '.', '-'," "]) import gradio as gr from transformers import AutoModelForMaskedLM, AutoTokenizer import numpy as np import librosa from feature_extractor import cnhubert cnhubert.cnhubert_base_path = cnhubert_base_path from module.models import SynthesizerTrn from AR.models.t2s_lightning_module import Text2SemanticLightningModule from text import cleaned_text_to_sequence from text.cleaner import clean_text from time import time as ttime from module.mel_processing import spectrogram_torch from tools.my_utils import load_audio from tools.i18n.i18n import I18nAuto, scan_language_list # language=os.environ.get("language","Auto") # language=sys.argv[-1] if sys.argv[-1] in scan_language_list() else language i18n = I18nAuto(language="Auto") # os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。 if torch.cuda.is_available(): device = "cuda" is_half = True # eval(os.environ.get("is_half", "True")) and torch.cuda.is_available() else: device = "cpu" is_half=False dict_language_v1 = { i18n("中文"): "all_zh",#全部按中文识别 i18n("英文"): "en",#全部按英文识别#######不变 i18n("日文"): "all_ja",#全部按日文识别 i18n("中英混合"): "zh",#按中英混合识别####不变 i18n("日英混合"): "ja",#按日英混合识别####不变 i18n("多语种混合"): "auto",#多语种启动切分识别语种 } dict_language_v2 = { i18n("中文"): "all_zh",#全部按中文识别 i18n("英文"): "en",#全部按英文识别#######不变 i18n("日文"): "all_ja",#全部按日文识别 i18n("粤语"): "all_yue",#全部按中文识别 i18n("韩文"): "all_ko",#全部按韩文识别 i18n("中英混合"): "zh",#按中英混合识别####不变 i18n("日英混合"): "ja",#按日英混合识别####不变 i18n("粤英混合"): "yue",#按粤英混合识别####不变 i18n("韩英混合"): "ko",#按韩英混合识别####不变 i18n("多语种混合"): "auto",#多语种启动切分识别语种 i18n("多语种混合(粤语)"): "auto_yue",#多语种启动切分识别语种 } dict_language = dict_language_v1 if version =='v1' else dict_language_v2 tokenizer = AutoTokenizer.from_pretrained(bert_path) bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) if is_half == True: bert_model = bert_model.half().to(device) else: bert_model = bert_model.to(device) def get_bert_feature(text, word2ph): with torch.no_grad(): inputs = tokenizer(text, return_tensors="pt") for i in inputs: inputs[i] = inputs[i].to(device) res = bert_model(**inputs, output_hidden_states=True) res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] assert len(word2ph) == len(text) phone_level_feature = [] for i in range(len(word2ph)): repeat_feature = res[i].repeat(word2ph[i], 1) phone_level_feature.append(repeat_feature) phone_level_feature = torch.cat(phone_level_feature, dim=0) return phone_level_feature.T class DictToAttrRecursive(dict): def __init__(self, input_dict): super().__init__(input_dict) for key, value in input_dict.items(): if isinstance(value, dict): value = DictToAttrRecursive(value) self[key] = value setattr(self, key, value) def __getattr__(self, item): try: return self[item] except KeyError: raise AttributeError(f"Attribute {item} not found") def __setattr__(self, key, value): if isinstance(value, dict): value = DictToAttrRecursive(value) super(DictToAttrRecursive, self).__setitem__(key, value) super().__setattr__(key, value) def __delattr__(self, item): try: del self[item] except KeyError: raise AttributeError(f"Attribute {item} not found") ssl_model = cnhubert.get_model() if is_half == True: ssl_model = ssl_model.half().to(device) else: ssl_model = ssl_model.to(device) def change_sovits_weights(sovits_path,prompt_language=None,text_language=None): global vq_model, hps, version, dict_language dict_s2 = torch.load(sovits_path, map_location="cpu") hps = dict_s2["config"] hps = DictToAttrRecursive(hps) hps.model.semantic_frame_rate = "25hz" if dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322: hps.model.version = "v1" else: hps.model.version = "v2" version = hps.model.version # print("sovits版本:",hps.model.version) vq_model = SynthesizerTrn( hps.data.filter_length // 2 + 1, hps.train.segment_size // hps.data.hop_length, n_speakers=hps.data.n_speakers, **hps.model ) if ("pretrained" not in sovits_path): del vq_model.enc_q if is_half == True: vq_model = vq_model.half().to(device) else: vq_model = vq_model.to(device) vq_model.eval() print(vq_model.load_state_dict(dict_s2["weight"], strict=False)) dict_language = dict_language_v1 if version =='v1' else dict_language_v2 if prompt_language is not None and text_language is not None: if prompt_language in list(dict_language.keys()): prompt_text_update, prompt_language_update = {'__type__':'update'}, {'__type__':'update', 'value':prompt_language} else: prompt_text_update = {'__type__':'update', 'value':''} prompt_language_update = {'__type__':'update', 'value':i18n("中文")} if text_language in list(dict_language.keys()): text_update, text_language_update = {'__type__':'update'}, {'__type__':'update', 'value':text_language} else: text_update = {'__type__':'update', 'value':''} text_language_update = {'__type__':'update', 'value':i18n("中文")} return {'__type__':'update', 'choices':list(dict_language.keys())}, {'__type__':'update', 'choices':list(dict_language.keys())}, prompt_text_update, prompt_language_update, text_update, text_language_update change_sovits_weights("pretrained_models/gsv-v2final-pretrained/s2G2333k.pth") def change_gpt_weights(gpt_path): global hz, max_sec, t2s_model, config hz = 50 dict_s1 = torch.load(gpt_path, map_location="cpu") config = dict_s1["config"] max_sec = config["data"]["max_sec"] t2s_model = Text2SemanticLightningModule(config, "****", is_train=False) t2s_model.load_state_dict(dict_s1["weight"]) if is_half == True: t2s_model = t2s_model.half() t2s_model = t2s_model.to(device) t2s_model.eval() total = sum([param.nelement() for param in t2s_model.parameters()]) print("Number of parameter: %.2fM" % (total / 1e6)) change_gpt_weights("pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt") def get_spepc(hps, filename): audio = load_audio(filename, int(hps.data.sampling_rate)) audio = torch.FloatTensor(audio) maxx=audio.abs().max() if(maxx>1):audio/=min(2,maxx) audio_norm = audio audio_norm = audio_norm.unsqueeze(0) spec = spectrogram_torch( audio_norm, hps.data.filter_length, hps.data.sampling_rate, hps.data.hop_length, hps.data.win_length, center=False, ) return spec def clean_text_inf(text, language, version): phones, word2ph, norm_text = clean_text(text, language, version) phones = cleaned_text_to_sequence(phones, version) return phones, word2ph, norm_text dtype=torch.float16 if is_half == True else torch.float32 def get_bert_inf(phones, word2ph, norm_text, language): language=language.replace("all_","") if language == "zh": bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype) else: bert = torch.zeros( (1024, len(phones)), dtype=torch.float16 if is_half == True else torch.float32, ).to(device) return bert splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", } def get_first(text): pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]" text = re.split(pattern, text)[0].strip() return text from text import chinese def get_phones_and_bert(text,language,version): if language in {"en", "all_zh", "all_ja", "all_ko", "all_yue"}: language = language.replace("all_","") if language == "en": LangSegment.setfilters(["en"]) formattext = " ".join(tmp["text"] for tmp in LangSegment.getTexts(text)) else: # 因无法区别中日韩文汉字,以用户输入为准 formattext = text while " " in formattext: formattext = formattext.replace(" ", " ") if language == "zh": if re.search(r'[A-Za-z]', formattext): formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext) formattext = chinese.mix_text_normalize(formattext) return get_phones_and_bert(formattext,"zh",version) else: phones, word2ph, norm_text = clean_text_inf(formattext, language, version) bert = get_bert_feature(norm_text, word2ph).to(device) elif language == "yue" and re.search(r'[A-Za-z]', formattext): formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext) formattext = chinese.mix_text_normalize(formattext) return get_phones_and_bert(formattext,"yue",version) else: phones, word2ph, norm_text = clean_text_inf(formattext, language, version) bert = torch.zeros( (1024, len(phones)), dtype=torch.float16 if is_half == True else torch.float32, ).to(device) elif language in {"zh", "ja", "ko", "yue", "auto", "auto_yue"}: textlist=[] langlist=[] LangSegment.setfilters(["zh","ja","en","ko"]) if language == "auto": for tmp in LangSegment.getTexts(text): langlist.append(tmp["lang"]) textlist.append(tmp["text"]) elif language == "auto_yue": for tmp in LangSegment.getTexts(text): if tmp["lang"] == "zh": tmp["lang"] = "yue" langlist.append(tmp["lang"]) textlist.append(tmp["text"]) else: for tmp in LangSegment.getTexts(text): if tmp["lang"] == "en": langlist.append(tmp["lang"]) else: # 因无法区别中日韩文汉字,以用户输入为准 langlist.append(language) textlist.append(tmp["text"]) print(textlist) print(langlist) phones_list = [] bert_list = [] norm_text_list = [] for i in range(len(textlist)): lang = langlist[i] phones, word2ph, norm_text = clean_text_inf(textlist[i], lang, version) bert = get_bert_inf(phones, word2ph, norm_text, lang) phones_list.append(phones) norm_text_list.append(norm_text) bert_list.append(bert) bert = torch.cat(bert_list, dim=1) phones = sum(phones_list, []) norm_text = ''.join(norm_text_list) return phones,bert.to(dtype),norm_text def merge_short_text_in_array(texts, threshold): if (len(texts)) < 2: return texts result = [] text = "" for ele in texts: text += ele if len(text) >= threshold: result.append(text) text = "" if (len(text) > 0): if len(result) == 0: result.append(text) else: result[len(result) - 1] += text return result ##ref_wav_path+prompt_text+prompt_language+text(单个)+text_language+top_k+top_p+temperature # cache_tokens={}#暂未实现清理机制 cache= {} @torch.inference_mode() @spaces.GPU def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切"), top_k=20, top_p=0.6, temperature=0.6, ref_free = False,speed=1,if_freeze=False,inp_refs=123): global cache if ref_wav_path:pass else:gr.Warning(i18n('请上传参考音频')) if text:pass else:gr.Warning(i18n('请填入推理文本')) t = [] if prompt_text is None or len(prompt_text) == 0: ref_free = True t0 = ttime() prompt_language = dict_language[prompt_language] text_language = dict_language[text_language] if not ref_free: prompt_text = prompt_text.strip("\n") if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "." print(i18n("实际输入的参考文本:"), prompt_text) text = text.strip("\n") if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text print(i18n("实际输入的目标文本:"), text) zero_wav = np.zeros( int(hps.data.sampling_rate * 0.3), dtype=np.float16 if is_half == True else np.float32, ) if not ref_free: with torch.no_grad(): wav16k, sr = librosa.load(ref_wav_path, sr=16000) if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000): gr.Warning(i18n("参考音频在3~10秒范围外,请更换!")) raise OSError(i18n("参考音频在3~10秒范围外,请更换!")) wav16k = torch.from_numpy(wav16k) zero_wav_torch = torch.from_numpy(zero_wav) if is_half == True: wav16k = wav16k.half().to(device) zero_wav_torch = zero_wav_torch.half().to(device) else: wav16k = wav16k.to(device) zero_wav_torch = zero_wav_torch.to(device) wav16k = torch.cat([wav16k, zero_wav_torch]) ssl_content = ssl_model.model(wav16k.unsqueeze(0))[ "last_hidden_state" ].transpose( 1, 2 ) # .float() codes = vq_model.extract_latent(ssl_content) prompt_semantic = codes[0, 0] prompt = prompt_semantic.unsqueeze(0).to(device) t1 = ttime() t.append(t1-t0) if (how_to_cut == i18n("凑四句一切")): text = cut1(text) elif (how_to_cut == i18n("凑50字一切")): text = cut2(text) elif (how_to_cut == i18n("按中文句号。切")): text = cut3(text) elif (how_to_cut == i18n("按英文句号.切")): text = cut4(text) elif (how_to_cut == i18n("按标点符号切")): text = cut5(text) while "\n\n" in text: text = text.replace("\n\n", "\n") print(i18n("实际输入的目标文本(切句后):"), text) texts = text.split("\n") texts = process_text(texts) texts = merge_short_text_in_array(texts, 5) audio_opt = [] if not ref_free: phones1,bert1,norm_text1=get_phones_and_bert(prompt_text, prompt_language, version) for i_text,text in enumerate(texts): # 解决输入目标文本的空行导致报错的问题 if (len(text.strip()) == 0): continue if (text[-1] not in splits): text += "。" if text_language != "en" else "." print(i18n("实际输入的目标文本(每句):"), text) phones2,bert2,norm_text2=get_phones_and_bert(text, text_language, version) print(i18n("前端处理后的文本(每句):"), norm_text2) if not ref_free: bert = torch.cat([bert1, bert2], 1) all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0) else: bert = bert2 all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0) bert = bert.to(device).unsqueeze(0) all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) t2 = ttime() # cache_key="%s-%s-%s-%s-%s-%s-%s-%s"%(ref_wav_path,prompt_text,prompt_language,text,text_language,top_k,top_p,temperature) # print(cache.keys(),if_freeze) if(i_text in cache and if_freeze==True):pred_semantic=cache[i_text] else: with torch.no_grad(): pred_semantic, idx = t2s_model.model.infer_panel( all_phoneme_ids, all_phoneme_len, None if ref_free else prompt, bert, # prompt_phone_len=ph_offset, top_k=top_k, top_p=top_p, temperature=temperature, early_stop_num=hz * max_sec, ) pred_semantic = pred_semantic[:, -idx:].unsqueeze(0) cache[i_text]=pred_semantic t3 = ttime() refers=[] if(inp_refs): for path in inp_refs: try: refer = get_spepc(hps, path.name).to(dtype).to(device) refers.append(refer) except: traceback.print_exc() if(len(refers)==0):refers = [get_spepc(hps, ref_wav_path).to(dtype).to(device)] audio = (vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refers,speed=speed).detach().cpu().numpy()[0, 0]) max_audio=np.abs(audio).max()#简单防止16bit爆音 if max_audio>1:audio/=max_audio audio_opt.append(audio) audio_opt.append(zero_wav) t4 = ttime() t.extend([t2 - t1,t3 - t2, t4 - t3]) t1 = ttime() print("%.3f\t%.3f\t%.3f\t%.3f" % (t[0], sum(t[1::3]), sum(t[2::3]), sum(t[3::3])) ) yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype( np.int16 ) def split(todo_text): todo_text = todo_text.replace("……", "。").replace("——", ",") if todo_text[-1] not in splits: todo_text += "。" i_split_head = i_split_tail = 0 len_text = len(todo_text) todo_texts = [] while 1: if i_split_head >= len_text: break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入 if todo_text[i_split_head] in splits: i_split_head += 1 todo_texts.append(todo_text[i_split_tail:i_split_head]) i_split_tail = i_split_head else: i_split_head += 1 return todo_texts def cut1(inp): inp = inp.strip("\n") inps = split(inp) split_idx = list(range(0, len(inps), 4)) split_idx[-1] = None if len(split_idx) > 1: opts = [] for idx in range(len(split_idx) - 1): opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]])) else: opts = [inp] opts = [item for item in opts if not set(item).issubset(punctuation)] return "\n".join(opts) def cut2(inp): inp = inp.strip("\n") inps = split(inp) if len(inps) < 2: return inp opts = [] summ = 0 tmp_str = "" for i in range(len(inps)): summ += len(inps[i]) tmp_str += inps[i] if summ > 50: summ = 0 opts.append(tmp_str) tmp_str = "" if tmp_str != "": opts.append(tmp_str) # print(opts) if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起 opts[-2] = opts[-2] + opts[-1] opts = opts[:-1] opts = [item for item in opts if not set(item).issubset(punctuation)] return "\n".join(opts) def cut3(inp): inp = inp.strip("\n") opts = ["%s" % item for item in inp.strip("。").split("。")] opts = [item for item in opts if not set(item).issubset(punctuation)] return "\n".join(opts) def cut4(inp): inp = inp.strip("\n") opts = ["%s" % item for item in inp.strip(".").split(".")] opts = [item for item in opts if not set(item).issubset(punctuation)] return "\n".join(opts) # contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py def cut5(inp): inp = inp.strip("\n") punds = {',', '.', ';', '?', '!', '、', ',', '。', '?', '!', ';', ':', '…'} mergeitems = [] items = [] for i, char in enumerate(inp): if char in punds: if char == '.' and i > 0 and i < len(inp) - 1 and inp[i - 1].isdigit() and inp[i + 1].isdigit(): items.append(char) else: items.append(char) mergeitems.append("".join(items)) items = [] else: items.append(char) if items: mergeitems.append("".join(items)) opt = [item for item in mergeitems if not set(item).issubset(punds)] return "\n".join(opt) def custom_sort_key(s): # 使用正则表达式提取字符串中的数字部分和非数字部分 parts = re.split('(\d+)', s) # 将数字部分转换为整数,非数字部分保持不变 parts = [int(part) if part.isdigit() else part for part in parts] return parts def process_text(texts): _text=[] if all(text in [None, " ", "\n",""] for text in texts): raise ValueError(i18n("请输入有效文本")) for text in texts: if text in [None, " ", ""]: pass else: _text.append(text) return _text def html_center(text, label='p'): return f"""