Spaces:
Sleeping
Sleeping
from module.models_onnx import SynthesizerTrn, symbols | |
from AR.models.t2s_lightning_module_onnx import Text2SemanticLightningModule | |
import torch | |
import torchaudio | |
from torch import nn | |
from feature_extractor import cnhubert | |
cnhubert_base_path = "pretrained_models/chinese-hubert-base" | |
cnhubert.cnhubert_base_path=cnhubert_base_path | |
ssl_model = cnhubert.get_model() | |
from text import cleaned_text_to_sequence | |
import soundfile | |
from tools.my_utils import load_audio | |
import os | |
import json | |
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False): | |
hann_window = torch.hann_window(win_size).to( | |
dtype=y.dtype, device=y.device | |
) | |
y = torch.nn.functional.pad( | |
y.unsqueeze(1), | |
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), | |
mode="reflect", | |
) | |
y = y.squeeze(1) | |
spec = torch.stft( | |
y, | |
n_fft, | |
hop_length=hop_size, | |
win_length=win_size, | |
window=hann_window, | |
center=center, | |
pad_mode="reflect", | |
normalized=False, | |
onesided=True, | |
return_complex=False, | |
) | |
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) | |
return spec | |
class DictToAttrRecursive(dict): | |
def __init__(self, input_dict): | |
super().__init__(input_dict) | |
for key, value in input_dict.items(): | |
if isinstance(value, dict): | |
value = DictToAttrRecursive(value) | |
self[key] = value | |
setattr(self, key, value) | |
def __getattr__(self, item): | |
try: | |
return self[item] | |
except KeyError: | |
raise AttributeError(f"Attribute {item} not found") | |
def __setattr__(self, key, value): | |
if isinstance(value, dict): | |
value = DictToAttrRecursive(value) | |
super(DictToAttrRecursive, self).__setitem__(key, value) | |
super().__setattr__(key, value) | |
def __delattr__(self, item): | |
try: | |
del self[item] | |
except KeyError: | |
raise AttributeError(f"Attribute {item} not found") | |
class T2SEncoder(nn.Module): | |
def __init__(self, t2s, vits): | |
super().__init__() | |
self.encoder = t2s.onnx_encoder | |
self.vits = vits | |
def forward(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content): | |
codes = self.vits.extract_latent(ssl_content) | |
prompt_semantic = codes[0, 0] | |
bert = torch.cat([ref_bert.transpose(0, 1), text_bert.transpose(0, 1)], 1) | |
all_phoneme_ids = torch.cat([ref_seq, text_seq], 1) | |
bert = bert.unsqueeze(0) | |
prompt = prompt_semantic.unsqueeze(0) | |
return self.encoder(all_phoneme_ids, bert), prompt | |
class T2SModel(nn.Module): | |
def __init__(self, t2s_path, vits_model): | |
super().__init__() | |
dict_s1 = torch.load(t2s_path, map_location="cpu") | |
self.config = dict_s1["config"] | |
self.t2s_model = Text2SemanticLightningModule(self.config, "ojbk", is_train=False) | |
self.t2s_model.load_state_dict(dict_s1["weight"]) | |
self.t2s_model.eval() | |
self.vits_model = vits_model.vq_model | |
self.hz = 50 | |
self.max_sec = self.config["data"]["max_sec"] | |
self.t2s_model.model.top_k = torch.LongTensor([self.config["inference"]["top_k"]]) | |
self.t2s_model.model.early_stop_num = torch.LongTensor([self.hz * self.max_sec]) | |
self.t2s_model = self.t2s_model.model | |
self.t2s_model.init_onnx() | |
self.onnx_encoder = T2SEncoder(self.t2s_model, self.vits_model) | |
self.first_stage_decoder = self.t2s_model.first_stage_decoder | |
self.stage_decoder = self.t2s_model.stage_decoder | |
#self.t2s_model = torch.jit.script(self.t2s_model) | |
def forward(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content): | |
early_stop_num = self.t2s_model.early_stop_num | |
#[1,N] [1,N] [N, 1024] [N, 1024] [1, 768, N] | |
x, prompts = self.onnx_encoder(ref_seq, text_seq, ref_bert, text_bert, ssl_content) | |
prefix_len = prompts.shape[1] | |
#[1,N,512] [1,N] | |
y, k, v, y_emb, x_example = self.first_stage_decoder(x, prompts) | |
stop = False | |
for idx in range(1, 1500): | |
#[1, N] [N_layer, N, 1, 512] [N_layer, N, 1, 512] [1, N, 512] [1] [1, N, 512] [1, N] | |
enco = self.stage_decoder(y, k, v, y_emb, x_example) | |
y, k, v, y_emb, logits, samples = enco | |
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num: | |
stop = True | |
if torch.argmax(logits, dim=-1)[0] == self.t2s_model.EOS or samples[0, 0] == self.t2s_model.EOS: | |
stop = True | |
if stop: | |
break | |
y[0, -1] = 0 | |
return y[:, -idx:].unsqueeze(0) | |
def export(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content, project_name, dynamo=False): | |
#self.onnx_encoder = torch.jit.script(self.onnx_encoder) | |
if dynamo: | |
export_options = torch.onnx.ExportOptions(dynamic_shapes=True) | |
onnx_encoder_export_output = torch.onnx.dynamo_export( | |
self.onnx_encoder, | |
(ref_seq, text_seq, ref_bert, text_bert, ssl_content), | |
export_options=export_options | |
) | |
onnx_encoder_export_output.save(f"onnx/{project_name}/{project_name}_t2s_encoder.onnx") | |
return | |
torch.onnx.export( | |
self.onnx_encoder, | |
(ref_seq, text_seq, ref_bert, text_bert, ssl_content), | |
f"onnx/{project_name}/{project_name}_t2s_encoder.onnx", | |
input_names=["ref_seq", "text_seq", "ref_bert", "text_bert", "ssl_content"], | |
output_names=["x", "prompts"], | |
dynamic_axes={ | |
"ref_seq": {1 : "ref_length"}, | |
"text_seq": {1 : "text_length"}, | |
"ref_bert": {0 : "ref_length"}, | |
"text_bert": {0 : "text_length"}, | |
"ssl_content": {2 : "ssl_length"}, | |
}, | |
opset_version=16 | |
) | |
x, prompts = self.onnx_encoder(ref_seq, text_seq, ref_bert, text_bert, ssl_content) | |
torch.onnx.export( | |
self.first_stage_decoder, | |
(x, prompts), | |
f"onnx/{project_name}/{project_name}_t2s_fsdec.onnx", | |
input_names=["x", "prompts"], | |
output_names=["y", "k", "v", "y_emb", "x_example"], | |
dynamic_axes={ | |
"x": {1 : "x_length"}, | |
"prompts": {1 : "prompts_length"}, | |
}, | |
verbose=False, | |
opset_version=16 | |
) | |
y, k, v, y_emb, x_example = self.first_stage_decoder(x, prompts) | |
torch.onnx.export( | |
self.stage_decoder, | |
(y, k, v, y_emb, x_example), | |
f"onnx/{project_name}/{project_name}_t2s_sdec.onnx", | |
input_names=["iy", "ik", "iv", "iy_emb", "ix_example"], | |
output_names=["y", "k", "v", "y_emb", "logits", "samples"], | |
dynamic_axes={ | |
"iy": {1 : "iy_length"}, | |
"ik": {1 : "ik_length"}, | |
"iv": {1 : "iv_length"}, | |
"iy_emb": {1 : "iy_emb_length"}, | |
"ix_example": {1 : "ix_example_length"}, | |
}, | |
verbose=False, | |
opset_version=16 | |
) | |
class VitsModel(nn.Module): | |
def __init__(self, vits_path): | |
super().__init__() | |
dict_s2 = torch.load(vits_path,map_location="cpu") | |
self.hps = dict_s2["config"] | |
self.hps = DictToAttrRecursive(self.hps) | |
self.hps.model.semantic_frame_rate = "25hz" | |
self.vq_model = SynthesizerTrn( | |
self.hps.data.filter_length // 2 + 1, | |
self.hps.train.segment_size // self.hps.data.hop_length, | |
n_speakers=self.hps.data.n_speakers, | |
**self.hps.model | |
) | |
self.vq_model.eval() | |
self.vq_model.load_state_dict(dict_s2["weight"], strict=False) | |
def forward(self, text_seq, pred_semantic, ref_audio): | |
refer = spectrogram_torch( | |
ref_audio, | |
self.hps.data.filter_length, | |
self.hps.data.sampling_rate, | |
self.hps.data.hop_length, | |
self.hps.data.win_length, | |
center=False | |
) | |
return self.vq_model(pred_semantic, text_seq, refer)[0, 0] | |
class GptSoVits(nn.Module): | |
def __init__(self, vits, t2s): | |
super().__init__() | |
self.vits = vits | |
self.t2s = t2s | |
def forward(self, ref_seq, text_seq, ref_bert, text_bert, ref_audio, ssl_content, debug=False): | |
pred_semantic = self.t2s(ref_seq, text_seq, ref_bert, text_bert, ssl_content) | |
audio = self.vits(text_seq, pred_semantic, ref_audio) | |
if debug: | |
import onnxruntime | |
sess = onnxruntime.InferenceSession("onnx/koharu/koharu_vits.onnx", providers=["CPU"]) | |
audio1 = sess.run(None, { | |
"text_seq" : text_seq.detach().cpu().numpy(), | |
"pred_semantic" : pred_semantic.detach().cpu().numpy(), | |
"ref_audio" : ref_audio.detach().cpu().numpy() | |
}) | |
return audio, audio1 | |
return audio | |
def export(self, ref_seq, text_seq, ref_bert, text_bert, ref_audio, ssl_content, project_name): | |
self.t2s.export(ref_seq, text_seq, ref_bert, text_bert, ssl_content, project_name) | |
pred_semantic = self.t2s(ref_seq, text_seq, ref_bert, text_bert, ssl_content) | |
torch.onnx.export( | |
self.vits, | |
(text_seq, pred_semantic, ref_audio), | |
f"onnx/{project_name}/{project_name}_vits.onnx", | |
input_names=["text_seq", "pred_semantic", "ref_audio"], | |
output_names=["audio"], | |
dynamic_axes={ | |
"text_seq": {1 : "text_length"}, | |
"pred_semantic": {2 : "pred_length"}, | |
"ref_audio": {1 : "audio_length"}, | |
}, | |
opset_version=17, | |
verbose=False | |
) | |
class SSLModel(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.ssl = ssl_model | |
def forward(self, ref_audio_16k): | |
return self.ssl.model(ref_audio_16k)["last_hidden_state"].transpose(1, 2) | |
def export(vits_path, gpt_path, project_name): | |
vits = VitsModel(vits_path) | |
gpt = T2SModel(gpt_path, vits) | |
gpt_sovits = GptSoVits(vits, gpt) | |
ssl = SSLModel() | |
ref_seq = torch.LongTensor([cleaned_text_to_sequence(["n", "i2", "h", "ao3", ",", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4"])]) | |
text_seq = torch.LongTensor([cleaned_text_to_sequence(["w", "o3", "sh", "i4", "b", "ai2", "y", "e4", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4"])]) | |
ref_bert = torch.randn((ref_seq.shape[1], 1024)).float() | |
text_bert = torch.randn((text_seq.shape[1], 1024)).float() | |
ref_audio = torch.randn((1, 48000 * 5)).float() | |
# ref_audio = torch.tensor([load_audio("rec.wav", 48000)]).float() | |
ref_audio_16k = torchaudio.functional.resample(ref_audio,48000,16000).float() | |
ref_audio_sr = torchaudio.functional.resample(ref_audio,48000,vits.hps.data.sampling_rate).float() | |
try: | |
os.mkdir(f"onnx/{project_name}") | |
except: | |
pass | |
ssl_content = ssl(ref_audio_16k).float() | |
debug = False | |
if debug: | |
a, b = gpt_sovits(ref_seq, text_seq, ref_bert, text_bert, ref_audio_sr, ssl_content, debug=debug) | |
soundfile.write("out1.wav", a.cpu().detach().numpy(), vits.hps.data.sampling_rate) | |
soundfile.write("out2.wav", b[0], vits.hps.data.sampling_rate) | |
return | |
a = gpt_sovits(ref_seq, text_seq, ref_bert, text_bert, ref_audio_sr, ssl_content).detach().cpu().numpy() | |
soundfile.write("out.wav", a, vits.hps.data.sampling_rate) | |
gpt_sovits.export(ref_seq, text_seq, ref_bert, text_bert, ref_audio_sr, ssl_content, project_name) | |
MoeVSConf = { | |
"Folder" : f"{project_name}", | |
"Name" : f"{project_name}", | |
"Type" : "GPT-SoVits", | |
"Rate" : vits.hps.data.sampling_rate, | |
"NumLayers": gpt.t2s_model.num_layers, | |
"EmbeddingDim": gpt.t2s_model.embedding_dim, | |
"Dict": "BasicDict", | |
"BertPath": "chinese-roberta-wwm-ext-large", | |
"Symbol": symbols, | |
"AddBlank": False | |
} | |
MoeVSConfJson = json.dumps(MoeVSConf) | |
with open(f"onnx/{project_name}.json", 'w') as MoeVsConfFile: | |
json.dump(MoeVSConf, MoeVsConfFile, indent = 4) | |
if __name__ == "__main__": | |
try: | |
os.mkdir("onnx") | |
except: | |
pass | |
gpt_path = "GPT_weights/nahida-e25.ckpt" | |
vits_path = "SoVITS_weights/nahida_e30_s3930.pth" | |
exp_path = "nahida" | |
export(vits_path, gpt_path, exp_path) | |
# soundfile.write("out.wav", a, vits.hps.data.sampling_rate) |