Spaces:
Sleeping
Sleeping
''' | |
按中英混合识别 | |
按日英混合识别 | |
多语种启动切分识别语种 | |
全部按中文识别 | |
全部按英文识别 | |
全部按日文识别 | |
''' | |
import logging | |
import traceback | |
logging.getLogger("markdown_it").setLevel(logging.ERROR) | |
logging.getLogger("urllib3").setLevel(logging.ERROR) | |
logging.getLogger("httpcore").setLevel(logging.ERROR) | |
logging.getLogger("httpx").setLevel(logging.ERROR) | |
logging.getLogger("asyncio").setLevel(logging.ERROR) | |
logging.getLogger("charset_normalizer").setLevel(logging.ERROR) | |
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR) | |
logging.getLogger("multipart.multipart").setLevel(logging.ERROR) | |
import LangSegment, os, re, sys, json | |
import pdb | |
import torch | |
version="v2"#os.environ.get("version","v2") | |
cnhubert_base_path = os.environ.get( | |
"cnhubert_base_path", "pretrained_models/chinese-hubert-base" | |
) | |
bert_path = os.environ.get( | |
"bert_path", "pretrained_models/chinese-roberta-wwm-ext-large" | |
) | |
punctuation = set(['!', '?', '…', ',', '.', '-'," "]) | |
import gradio as gr | |
from transformers import AutoModelForMaskedLM, AutoTokenizer | |
import numpy as np | |
import librosa | |
from feature_extractor import cnhubert | |
cnhubert.cnhubert_base_path = cnhubert_base_path | |
from module.models import SynthesizerTrn | |
from AR.models.t2s_lightning_module import Text2SemanticLightningModule | |
from text import cleaned_text_to_sequence | |
from text.cleaner import clean_text | |
from time import time as ttime | |
from module.mel_processing import spectrogram_torch | |
from tools.my_utils import load_audio | |
from tools.i18n.i18n import I18nAuto, scan_language_list | |
# language=os.environ.get("language","Auto") | |
# language=sys.argv[-1] if sys.argv[-1] in scan_language_list() else language | |
i18n = I18nAuto(language="Auto") | |
# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。 | |
if torch.cuda.is_available(): | |
device = "cuda" | |
is_half = True # eval(os.environ.get("is_half", "True")) and torch.cuda.is_available() | |
else: | |
device = "cpu" | |
is_half=False | |
dict_language_v1 = { | |
i18n("中文"): "all_zh",#全部按中文识别 | |
i18n("英文"): "en",#全部按英文识别#######不变 | |
i18n("日文"): "all_ja",#全部按日文识别 | |
i18n("中英混合"): "zh",#按中英混合识别####不变 | |
i18n("日英混合"): "ja",#按日英混合识别####不变 | |
i18n("多语种混合"): "auto",#多语种启动切分识别语种 | |
} | |
dict_language_v2 = { | |
i18n("中文"): "all_zh",#全部按中文识别 | |
i18n("英文"): "en",#全部按英文识别#######不变 | |
i18n("日文"): "all_ja",#全部按日文识别 | |
i18n("粤语"): "all_yue",#全部按中文识别 | |
i18n("韩文"): "all_ko",#全部按韩文识别 | |
i18n("中英混合"): "zh",#按中英混合识别####不变 | |
i18n("日英混合"): "ja",#按日英混合识别####不变 | |
i18n("粤英混合"): "yue",#按粤英混合识别####不变 | |
i18n("韩英混合"): "ko",#按韩英混合识别####不变 | |
i18n("多语种混合"): "auto",#多语种启动切分识别语种 | |
i18n("多语种混合(粤语)"): "auto_yue",#多语种启动切分识别语种 | |
} | |
dict_language = dict_language_v1 if version =='v1' else dict_language_v2 | |
tokenizer = AutoTokenizer.from_pretrained(bert_path) | |
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path) | |
if is_half == True: | |
bert_model = bert_model.half().to(device) | |
else: | |
bert_model = bert_model.to(device) | |
def get_bert_feature(text, word2ph): | |
with torch.no_grad(): | |
inputs = tokenizer(text, return_tensors="pt") | |
for i in inputs: | |
inputs[i] = inputs[i].to(device) | |
res = bert_model(**inputs, output_hidden_states=True) | |
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1] | |
assert len(word2ph) == len(text) | |
phone_level_feature = [] | |
for i in range(len(word2ph)): | |
repeat_feature = res[i].repeat(word2ph[i], 1) | |
phone_level_feature.append(repeat_feature) | |
phone_level_feature = torch.cat(phone_level_feature, dim=0) | |
return phone_level_feature.T | |
class DictToAttrRecursive(dict): | |
def __init__(self, input_dict): | |
super().__init__(input_dict) | |
for key, value in input_dict.items(): | |
if isinstance(value, dict): | |
value = DictToAttrRecursive(value) | |
self[key] = value | |
setattr(self, key, value) | |
def __getattr__(self, item): | |
try: | |
return self[item] | |
except KeyError: | |
raise AttributeError(f"Attribute {item} not found") | |
def __setattr__(self, key, value): | |
if isinstance(value, dict): | |
value = DictToAttrRecursive(value) | |
super(DictToAttrRecursive, self).__setitem__(key, value) | |
super().__setattr__(key, value) | |
def __delattr__(self, item): | |
try: | |
del self[item] | |
except KeyError: | |
raise AttributeError(f"Attribute {item} not found") | |
ssl_model = cnhubert.get_model() | |
if is_half == True: | |
ssl_model = ssl_model.half().to(device) | |
else: | |
ssl_model = ssl_model.to(device) | |
def change_sovits_weights(sovits_path,prompt_language=None,text_language=None): | |
global vq_model, hps, version, dict_language | |
dict_s2 = torch.load(sovits_path, map_location="cpu") | |
hps = dict_s2["config"] | |
hps = DictToAttrRecursive(hps) | |
hps.model.semantic_frame_rate = "25hz" | |
if dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322: | |
hps.model.version = "v1" | |
else: | |
hps.model.version = "v2" | |
version = hps.model.version | |
# print("sovits版本:",hps.model.version) | |
vq_model = SynthesizerTrn( | |
hps.data.filter_length // 2 + 1, | |
hps.train.segment_size // hps.data.hop_length, | |
n_speakers=hps.data.n_speakers, | |
**hps.model | |
) | |
if ("pretrained" not in sovits_path): | |
del vq_model.enc_q | |
if is_half == True: | |
vq_model = vq_model.half().to(device) | |
else: | |
vq_model = vq_model.to(device) | |
vq_model.eval() | |
print(vq_model.load_state_dict(dict_s2["weight"], strict=False)) | |
dict_language = dict_language_v1 if version =='v1' else dict_language_v2 | |
if prompt_language is not None and text_language is not None: | |
if prompt_language in list(dict_language.keys()): | |
prompt_text_update, prompt_language_update = {'__type__':'update'}, {'__type__':'update', 'value':prompt_language} | |
else: | |
prompt_text_update = {'__type__':'update', 'value':''} | |
prompt_language_update = {'__type__':'update', 'value':i18n("中文")} | |
if text_language in list(dict_language.keys()): | |
text_update, text_language_update = {'__type__':'update'}, {'__type__':'update', 'value':text_language} | |
else: | |
text_update = {'__type__':'update', 'value':''} | |
text_language_update = {'__type__':'update', 'value':i18n("中文")} | |
return {'__type__':'update', 'choices':list(dict_language.keys())}, {'__type__':'update', 'choices':list(dict_language.keys())}, prompt_text_update, prompt_language_update, text_update, text_language_update | |
change_sovits_weights("pretrained_models/gsv-v2final-pretrained/s2G2333k.pth") | |
def change_gpt_weights(gpt_path): | |
global hz, max_sec, t2s_model, config | |
hz = 50 | |
dict_s1 = torch.load(gpt_path, map_location="cpu") | |
config = dict_s1["config"] | |
max_sec = config["data"]["max_sec"] | |
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False) | |
t2s_model.load_state_dict(dict_s1["weight"]) | |
if is_half == True: | |
t2s_model = t2s_model.half() | |
t2s_model = t2s_model.to(device) | |
t2s_model.eval() | |
total = sum([param.nelement() for param in t2s_model.parameters()]) | |
print("Number of parameter: %.2fM" % (total / 1e6)) | |
change_gpt_weights("pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt") | |
def get_spepc(hps, filename): | |
audio = load_audio(filename, int(hps.data.sampling_rate)) | |
audio = torch.FloatTensor(audio) | |
maxx=audio.abs().max() | |
if(maxx>1):audio/=min(2,maxx) | |
audio_norm = audio | |
audio_norm = audio_norm.unsqueeze(0) | |
spec = spectrogram_torch( | |
audio_norm, | |
hps.data.filter_length, | |
hps.data.sampling_rate, | |
hps.data.hop_length, | |
hps.data.win_length, | |
center=False, | |
) | |
return spec | |
def clean_text_inf(text, language, version): | |
phones, word2ph, norm_text = clean_text(text, language, version) | |
phones = cleaned_text_to_sequence(phones, version) | |
return phones, word2ph, norm_text | |
dtype=torch.float16 if is_half == True else torch.float32 | |
def get_bert_inf(phones, word2ph, norm_text, language): | |
language=language.replace("all_","") | |
if language == "zh": | |
bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype) | |
else: | |
bert = torch.zeros( | |
(1024, len(phones)), | |
dtype=torch.float16 if is_half == True else torch.float32, | |
).to(device) | |
return bert | |
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", } | |
def get_first(text): | |
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]" | |
text = re.split(pattern, text)[0].strip() | |
return text | |
from text import chinese | |
def get_phones_and_bert(text,language,version): | |
if language in {"en", "all_zh", "all_ja", "all_ko", "all_yue"}: | |
language = language.replace("all_","") | |
if language == "en": | |
LangSegment.setfilters(["en"]) | |
formattext = " ".join(tmp["text"] for tmp in LangSegment.getTexts(text)) | |
else: | |
# 因无法区别中日韩文汉字,以用户输入为准 | |
formattext = text | |
while " " in formattext: | |
formattext = formattext.replace(" ", " ") | |
if language == "zh": | |
if re.search(r'[A-Za-z]', formattext): | |
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext) | |
formattext = chinese.mix_text_normalize(formattext) | |
return get_phones_and_bert(formattext,"zh",version) | |
else: | |
phones, word2ph, norm_text = clean_text_inf(formattext, language, version) | |
bert = get_bert_feature(norm_text, word2ph).to(device) | |
elif language == "yue" and re.search(r'[A-Za-z]', formattext): | |
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext) | |
formattext = chinese.mix_text_normalize(formattext) | |
return get_phones_and_bert(formattext,"yue",version) | |
else: | |
phones, word2ph, norm_text = clean_text_inf(formattext, language, version) | |
bert = torch.zeros( | |
(1024, len(phones)), | |
dtype=torch.float16 if is_half == True else torch.float32, | |
).to(device) | |
elif language in {"zh", "ja", "ko", "yue", "auto", "auto_yue"}: | |
textlist=[] | |
langlist=[] | |
LangSegment.setfilters(["zh","ja","en","ko"]) | |
if language == "auto": | |
for tmp in LangSegment.getTexts(text): | |
langlist.append(tmp["lang"]) | |
textlist.append(tmp["text"]) | |
elif language == "auto_yue": | |
for tmp in LangSegment.getTexts(text): | |
if tmp["lang"] == "zh": | |
tmp["lang"] = "yue" | |
langlist.append(tmp["lang"]) | |
textlist.append(tmp["text"]) | |
else: | |
for tmp in LangSegment.getTexts(text): | |
if tmp["lang"] == "en": | |
langlist.append(tmp["lang"]) | |
else: | |
# 因无法区别中日韩文汉字,以用户输入为准 | |
langlist.append(language) | |
textlist.append(tmp["text"]) | |
print(textlist) | |
print(langlist) | |
phones_list = [] | |
bert_list = [] | |
norm_text_list = [] | |
for i in range(len(textlist)): | |
lang = langlist[i] | |
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang, version) | |
bert = get_bert_inf(phones, word2ph, norm_text, lang) | |
phones_list.append(phones) | |
norm_text_list.append(norm_text) | |
bert_list.append(bert) | |
bert = torch.cat(bert_list, dim=1) | |
phones = sum(phones_list, []) | |
norm_text = ''.join(norm_text_list) | |
return phones,bert.to(dtype),norm_text | |
def merge_short_text_in_array(texts, threshold): | |
if (len(texts)) < 2: | |
return texts | |
result = [] | |
text = "" | |
for ele in texts: | |
text += ele | |
if len(text) >= threshold: | |
result.append(text) | |
text = "" | |
if (len(text) > 0): | |
if len(result) == 0: | |
result.append(text) | |
else: | |
result[len(result) - 1] += text | |
return result | |
##ref_wav_path+prompt_text+prompt_language+text(单个)+text_language+top_k+top_p+temperature | |
# cache_tokens={}#暂未实现清理机制 | |
cache= {} | |
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切"), top_k=20, top_p=0.6, temperature=0.6, ref_free = False,speed=1,if_freeze=False,inp_refs=123): | |
global cache | |
if ref_wav_path:pass | |
else:gr.Warning(i18n('请上传参考音频')) | |
if text:pass | |
else:gr.Warning(i18n('请填入推理文本')) | |
t = [] | |
if prompt_text is None or len(prompt_text) == 0: | |
ref_free = True | |
t0 = ttime() | |
prompt_language = dict_language[prompt_language] | |
text_language = dict_language[text_language] | |
if not ref_free: | |
prompt_text = prompt_text.strip("\n") | |
if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "." | |
print(i18n("实际输入的参考文本:"), prompt_text) | |
text = text.strip("\n") | |
if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text | |
print(i18n("实际输入的目标文本:"), text) | |
zero_wav = np.zeros( | |
int(hps.data.sampling_rate * 0.3), | |
dtype=np.float16 if is_half == True else np.float32, | |
) | |
if not ref_free: | |
with torch.no_grad(): | |
wav16k, sr = librosa.load(ref_wav_path, sr=16000) | |
if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000): | |
gr.Warning(i18n("参考音频在3~10秒范围外,请更换!")) | |
raise OSError(i18n("参考音频在3~10秒范围外,请更换!")) | |
wav16k = torch.from_numpy(wav16k) | |
zero_wav_torch = torch.from_numpy(zero_wav) | |
if is_half == True: | |
wav16k = wav16k.half().to(device) | |
zero_wav_torch = zero_wav_torch.half().to(device) | |
else: | |
wav16k = wav16k.to(device) | |
zero_wav_torch = zero_wav_torch.to(device) | |
wav16k = torch.cat([wav16k, zero_wav_torch]) | |
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[ | |
"last_hidden_state" | |
].transpose( | |
1, 2 | |
) # .float() | |
codes = vq_model.extract_latent(ssl_content) | |
prompt_semantic = codes[0, 0] | |
prompt = prompt_semantic.unsqueeze(0).to(device) | |
t1 = ttime() | |
t.append(t1-t0) | |
if (how_to_cut == i18n("凑四句一切")): | |
text = cut1(text) | |
elif (how_to_cut == i18n("凑50字一切")): | |
text = cut2(text) | |
elif (how_to_cut == i18n("按中文句号。切")): | |
text = cut3(text) | |
elif (how_to_cut == i18n("按英文句号.切")): | |
text = cut4(text) | |
elif (how_to_cut == i18n("按标点符号切")): | |
text = cut5(text) | |
while "\n\n" in text: | |
text = text.replace("\n\n", "\n") | |
print(i18n("实际输入的目标文本(切句后):"), text) | |
texts = text.split("\n") | |
texts = process_text(texts) | |
texts = merge_short_text_in_array(texts, 5) | |
audio_opt = [] | |
if not ref_free: | |
phones1,bert1,norm_text1=get_phones_and_bert(prompt_text, prompt_language, version) | |
for i_text,text in enumerate(texts): | |
# 解决输入目标文本的空行导致报错的问题 | |
if (len(text.strip()) == 0): | |
continue | |
if (text[-1] not in splits): text += "。" if text_language != "en" else "." | |
print(i18n("实际输入的目标文本(每句):"), text) | |
phones2,bert2,norm_text2=get_phones_and_bert(text, text_language, version) | |
print(i18n("前端处理后的文本(每句):"), norm_text2) | |
if not ref_free: | |
bert = torch.cat([bert1, bert2], 1) | |
all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0) | |
else: | |
bert = bert2 | |
all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0) | |
bert = bert.to(device).unsqueeze(0) | |
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device) | |
t2 = ttime() | |
# cache_key="%s-%s-%s-%s-%s-%s-%s-%s"%(ref_wav_path,prompt_text,prompt_language,text,text_language,top_k,top_p,temperature) | |
# print(cache.keys(),if_freeze) | |
if(i_text in cache and if_freeze==True):pred_semantic=cache[i_text] | |
else: | |
with torch.no_grad(): | |
pred_semantic, idx = t2s_model.model.infer_panel( | |
all_phoneme_ids, | |
all_phoneme_len, | |
None if ref_free else prompt, | |
bert, | |
# prompt_phone_len=ph_offset, | |
top_k=top_k, | |
top_p=top_p, | |
temperature=temperature, | |
early_stop_num=hz * max_sec, | |
) | |
pred_semantic = pred_semantic[:, -idx:].unsqueeze(0) | |
cache[i_text]=pred_semantic | |
t3 = ttime() | |
refers=[] | |
if(inp_refs): | |
for path in inp_refs: | |
try: | |
refer = get_spepc(hps, path.name).to(dtype).to(device) | |
refers.append(refer) | |
except: | |
traceback.print_exc() | |
if(len(refers)==0):refers = [get_spepc(hps, ref_wav_path).to(dtype).to(device)] | |
audio = (vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refers,speed=speed).detach().cpu().numpy()[0, 0]) | |
max_audio=np.abs(audio).max()#简单防止16bit爆音 | |
if max_audio>1:audio/=max_audio | |
audio_opt.append(audio) | |
audio_opt.append(zero_wav) | |
t4 = ttime() | |
t.extend([t2 - t1,t3 - t2, t4 - t3]) | |
t1 = ttime() | |
print("%.3f\t%.3f\t%.3f\t%.3f" % | |
(t[0], sum(t[1::3]), sum(t[2::3]), sum(t[3::3])) | |
) | |
yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype( | |
np.int16 | |
) | |
def split(todo_text): | |
todo_text = todo_text.replace("……", "。").replace("——", ",") | |
if todo_text[-1] not in splits: | |
todo_text += "。" | |
i_split_head = i_split_tail = 0 | |
len_text = len(todo_text) | |
todo_texts = [] | |
while 1: | |
if i_split_head >= len_text: | |
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入 | |
if todo_text[i_split_head] in splits: | |
i_split_head += 1 | |
todo_texts.append(todo_text[i_split_tail:i_split_head]) | |
i_split_tail = i_split_head | |
else: | |
i_split_head += 1 | |
return todo_texts | |
def cut1(inp): | |
inp = inp.strip("\n") | |
inps = split(inp) | |
split_idx = list(range(0, len(inps), 4)) | |
split_idx[-1] = None | |
if len(split_idx) > 1: | |
opts = [] | |
for idx in range(len(split_idx) - 1): | |
opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]])) | |
else: | |
opts = [inp] | |
opts = [item for item in opts if not set(item).issubset(punctuation)] | |
return "\n".join(opts) | |
def cut2(inp): | |
inp = inp.strip("\n") | |
inps = split(inp) | |
if len(inps) < 2: | |
return inp | |
opts = [] | |
summ = 0 | |
tmp_str = "" | |
for i in range(len(inps)): | |
summ += len(inps[i]) | |
tmp_str += inps[i] | |
if summ > 50: | |
summ = 0 | |
opts.append(tmp_str) | |
tmp_str = "" | |
if tmp_str != "": | |
opts.append(tmp_str) | |
# print(opts) | |
if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起 | |
opts[-2] = opts[-2] + opts[-1] | |
opts = opts[:-1] | |
opts = [item for item in opts if not set(item).issubset(punctuation)] | |
return "\n".join(opts) | |
def cut3(inp): | |
inp = inp.strip("\n") | |
opts = ["%s" % item for item in inp.strip("。").split("。")] | |
opts = [item for item in opts if not set(item).issubset(punctuation)] | |
return "\n".join(opts) | |
def cut4(inp): | |
inp = inp.strip("\n") | |
opts = ["%s" % item for item in inp.strip(".").split(".")] | |
opts = [item for item in opts if not set(item).issubset(punctuation)] | |
return "\n".join(opts) | |
# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py | |
def cut5(inp): | |
inp = inp.strip("\n") | |
punds = {',', '.', ';', '?', '!', '、', ',', '。', '?', '!', ';', ':', '…'} | |
mergeitems = [] | |
items = [] | |
for i, char in enumerate(inp): | |
if char in punds: | |
if char == '.' and i > 0 and i < len(inp) - 1 and inp[i - 1].isdigit() and inp[i + 1].isdigit(): | |
items.append(char) | |
else: | |
items.append(char) | |
mergeitems.append("".join(items)) | |
items = [] | |
else: | |
items.append(char) | |
if items: | |
mergeitems.append("".join(items)) | |
opt = [item for item in mergeitems if not set(item).issubset(punds)] | |
return "\n".join(opt) | |
def custom_sort_key(s): | |
# 使用正则表达式提取字符串中的数字部分和非数字部分 | |
parts = re.split('(\d+)', s) | |
# 将数字部分转换为整数,非数字部分保持不变 | |
parts = [int(part) if part.isdigit() else part for part in parts] | |
return parts | |
def process_text(texts): | |
_text=[] | |
if all(text in [None, " ", "\n",""] for text in texts): | |
raise ValueError(i18n("请输入有效文本")) | |
for text in texts: | |
if text in [None, " ", ""]: | |
pass | |
else: | |
_text.append(text) | |
return _text | |
def html_center(text, label='p'): | |
return f"""<div style="text-align: center; margin: 100; padding: 50;"> | |
<{label} style="margin: 0; padding: 0;">{text}</{label}> | |
</div>""" | |
def html_left(text, label='p'): | |
return f"""<div style="text-align: left; margin: 0; padding: 0;"> | |
<{label} style="margin: 0; padding: 0;">{text}</{label}> | |
</div>""" | |
with gr.Blocks(title="GPT-SoVITS WebUI") as app: | |
gr.Markdown( | |
value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.") | |
) | |
with gr.Group(): | |
gr.Markdown(html_center(i18n("*请上传并填写参考信息"),'h3')) | |
with gr.Row(): | |
inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频,超过会报错!"), type="filepath") | |
with gr.Column(): | |
ref_text_free = gr.Checkbox(label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。"), value=False, interactive=True, show_label=True) | |
gr.Markdown(html_left(i18n("使用无参考文本模式时建议使用微调的GPT,听不清参考音频说的啥(不晓得写啥)可以开。<br>开启后无视填写的参考文本。"))) | |
prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="", lines=3, max_lines=3) | |
prompt_language = gr.Dropdown( | |
label=i18n("参考音频的语种"), choices=list(dict_language.keys()), value=i18n("中文") | |
) | |
inp_refs = gr.File(label=i18n("可选项:通过拖拽多个文件上传多个参考音频(建议同性),平均融合他们的音色。如不填写此项,音色由左侧单个参考音频控制。"),file_count="file_count") | |
gr.Markdown(html_center(i18n("*请填写需要合成的目标文本和语种模式"),'h3')) | |
with gr.Row(): | |
with gr.Column(): | |
text = gr.Textbox(label=i18n("需要合成的文本"), value="", lines=26, max_lines=26) | |
with gr.Column(): | |
text_language = gr.Dropdown( | |
label=i18n("需要合成的语种")+i18n(".限制范围越小判别效果越好。"), choices=list(dict_language.keys()), value=i18n("中文") | |
) | |
how_to_cut = gr.Dropdown( | |
label=i18n("怎么切"), | |
choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ], | |
value=i18n("凑四句一切"), | |
interactive=True | |
) | |
gr.Markdown(value=html_center(i18n("语速调整,高为更快"))) | |
if_freeze=gr.Checkbox(label=i18n("是否直接对上次合成结果调整语速和音色。防止随机性。"), value=False, interactive=True,show_label=True) | |
speed = gr.Slider(minimum=0.6,maximum=1.65,step=0.05,label=i18n("语速"),value=1,interactive=True) | |
gr.Markdown(html_center(i18n("GPT采样参数(无参考文本时不要太低。不懂就用默认):"))) | |
top_k = gr.Slider(minimum=1,maximum=100,step=1,label=i18n("top_k"),value=15,interactive=True) | |
top_p = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("top_p"),value=1,interactive=True) | |
temperature = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("temperature"),value=1,interactive=True) | |
with gr.Row(): | |
inference_button = gr.Button(i18n("合成语音"), variant="primary", size='lg') | |
output = gr.Audio(label=i18n("输出的语音")) | |
inference_button.click( | |
get_tts_wav, | |
[inp_ref, prompt_text, prompt_language, text, text_language, how_to_cut, top_k, top_p, temperature, ref_text_free,speed,if_freeze,inp_refs], | |
[output], | |
) | |
if __name__ == '__main__': | |
app.queue(concurrency_count=511, max_size=1022).launch( | |
server_name="0.0.0.0", | |
inbrowser=True, | |
# share=True, | |
# server_port=infer_ttswebui, | |
quiet=True, | |
) | |