Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import streamlit as st
|
3 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
4 |
+
from transformers import AutoTokenizer, VisionEncoderDecoderModel, ViTFeatureExtractor
|
5 |
+
|
6 |
+
# Load the Model,feature extractor and tokenizer
|
7 |
+
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
8 |
+
extractor = ViTFeatureExtractor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
9 |
+
tokeniser = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
10 |
+
|
11 |
+
def generate_captions(image):
|
12 |
+
generated_caption = tokeniser.decode(model.generate(extractor(image, return_tensors="pt").pixel_values.to("cpu"))[0])
|
13 |
+
sentence = generated_caption
|
14 |
+
text_to_remove = "<|endoftext|>"
|
15 |
+
generated_caption = sentence.replace(text_to_remove, "")
|
16 |
+
return generated_caption
|
17 |
+
|
18 |
+
# Load the pre-trained model and tokenizer
|
19 |
+
model_name = "gpt2"
|
20 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
21 |
+
model = GPT2LMHeadModel.from_pretrained(model_name)
|
22 |
+
|
23 |
+
# Define the Streamlit app
|
24 |
+
def generate_paragraph(prompt):
|
25 |
+
# Tokenize the prompt
|
26 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
27 |
+
|
28 |
+
# Generate the paragraph
|
29 |
+
output = model.generate(input_ids, max_length=200, num_return_sequences=1, early_stopping=True)
|
30 |
+
|
31 |
+
# Decode the generated output into text
|
32 |
+
paragraph = tokenizer.decode(output[0], skip_special_tokens=True)
|
33 |
+
return paragraph
|
34 |
+
|
35 |
+
# Streamlit app
|
36 |
+
def main():
|
37 |
+
# Set Streamlit app title and description
|
38 |
+
st.title("Paragraph Generation From Context of an Image")
|
39 |
+
st.subheader("Upload the Image to generate a paragraph.")
|
40 |
+
|
41 |
+
# create file uploader
|
42 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
43 |
+
|
44 |
+
# check if file has been uploaded
|
45 |
+
if uploaded_file is not None:
|
46 |
+
# load the image
|
47 |
+
image = Image.open(uploaded_file).convert("RGB")
|
48 |
+
|
49 |
+
# context as prompt
|
50 |
+
prompt = generate_captions(uploaded_file)
|
51 |
+
st.write("The Context is:", prompt)
|
52 |
+
|
53 |
+
# display the image
|
54 |
+
st.image(uploaded_file)
|
55 |
+
|
56 |
+
generated_paragraph = generate_paragraph(prompt)
|
57 |
+
|
58 |
+
st.write(generated_paragraph)
|
59 |
+
|
60 |
+
if __name__ == "__main__":
|
61 |
+
main()
|