SOR / sf3d /sf3d_utils.py
aiqtech's picture
Upload 5 files
317ed10 verified
from typing import Any
import numpy as np
import rembg
import torch
from PIL import Image
import sf3d.models.utils as sf3d_utils
def create_intrinsic_from_fov_deg(fov_deg: float, cond_height: int, cond_width: int):
intrinsic = sf3d_utils.get_intrinsic_from_fov(
np.deg2rad(fov_deg),
H=cond_height,
W=cond_width,
)
intrinsic_normed_cond = intrinsic.clone()
intrinsic_normed_cond[..., 0, 2] /= cond_width
intrinsic_normed_cond[..., 1, 2] /= cond_height
intrinsic_normed_cond[..., 0, 0] /= cond_width
intrinsic_normed_cond[..., 1, 1] /= cond_height
return intrinsic, intrinsic_normed_cond
def default_cond_c2w(distance: float):
c2w_cond = torch.as_tensor(
[
[0, 0, 1, distance],
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 0, 1],
]
).float()
return c2w_cond
def remove_background(
image: Image,
rembg_session: Any = None,
force: bool = False,
**rembg_kwargs,
) -> Image:
do_remove = True
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
do_remove = False
do_remove = do_remove or force
if do_remove:
image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
return image
def resize_foreground(
image: Image,
ratio: float,
) -> Image:
image = np.array(image)
assert image.shape[-1] == 4
alpha = np.where(image[..., 3] > 0)
y1, y2, x1, x2 = (
alpha[0].min(),
alpha[0].max(),
alpha[1].min(),
alpha[1].max(),
)
# crop the foreground
fg = image[y1:y2, x1:x2]
# pad to square
size = max(fg.shape[0], fg.shape[1])
ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2
ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0
new_image = np.pad(
fg,
((ph0, ph1), (pw0, pw1), (0, 0)),
mode="constant",
constant_values=((0, 0), (0, 0), (0, 0)),
)
# compute padding according to the ratio
new_size = int(new_image.shape[0] / ratio)
# pad to size, double side
ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2
ph1, pw1 = new_size - size - ph0, new_size - size - pw0
new_image = np.pad(
new_image,
((ph0, ph1), (pw0, pw1), (0, 0)),
mode="constant",
constant_values=((0, 0), (0, 0), (0, 0)),
)
new_image = Image.fromarray(new_image, mode="RGBA")
return new_image