import gradio as gr import cv2 import requests import os import numpy as np from ultralytics import YOLO # file_urls = [ # 'https://www.dropbox.com/s/b5g97xo901zb3ds/Garbage_example.jpg?dl=1', # 'https://www.dropbox.com/s/86uxlxxlm1iaexa/Garbage_screenshot.png?dl=1', # 'https://www.dropbox.com/s/7sjfwncffg8xej2/video_7.mp4?dl=1' # ] # def download_file(url, save_name): # if not os.path.exists(save_name): # file = requests.get(url) # open(save_name, 'wb').write(file.content) # for i, url in enumerate(file_urls): # if 'mp4' in file_urls[i]: # download_file( # file_urls[i], # f"video.mp4" # ) # else: # download_file( # file_urls[i], # f"image_{i}.jpg" # ) model = YOLO('best.pt') path = [['1.jpeg'], ['2.jpeg']] video_path = [['contoh.mp4']] def show_preds_image(image_path): image = cv2.imread(image_path) outputs = model.predict(source=image_path) results = outputs[0].cpu().numpy() for i, det in enumerate(results.boxes.xyxy): cv2.rectangle( image, (int(det[0]), int(det[1])), (int(det[2]), int(det[3])), color=(0, 0, 255), thickness=2, lineType=cv2.LINE_AA ) return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) def show_preds_video(video_path): cap = cv2.VideoCapture(video_path) while(cap.isOpened()): ret, frame = cap.read() if ret: frame_copy = frame.copy() outputs = model.predict(source=frame) results = outputs[0].cpu().numpy() for i, det in enumerate(results.boxes.xyxy): cv2.rectangle( frame_copy, (int(det[0]), int(det[1])), (int(det[2]), int(det[3])), color=(0, 0, 255), thickness=2, lineType=cv2.LINE_AA ) yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB) else: break def show_preds_webcam(frame): frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) outputs = model.predict(source=frame) results = outputs[0].cpu().numpy() for i, det in enumerate(results.boxes.xyxy): cv2.rectangle( frame, (int(det[0]), int(det[1])), (int(det[2]), int(det[3])), color=(0, 0, 255), thickness=2, lineType=cv2.LINE_AA ) return frame inputs_image = gr.Image(label="Input Image") outputs_image = gr.Image(label="Output Image") interface_image = gr.Interface( fn=show_preds_image, inputs=inputs_image, outputs=outputs_image, title="Garbage Detection", examples=path, cache_examples=False, ) inputs_video = gr.Video(label="Input Video") outputs_video = gr.Image(label="Output Image") interface_video = gr.Interface( fn=show_preds_video, inputs=inputs_video, outputs=outputs_video, title="Garbage Detection", examples=video_path, cache_examples=False, ) inputs_webcam = gr.Image(sources="webcam", streaming=True) outputs_webcam = gr.Image(label="Output Image") interface_webcam = gr.Interface( fn=show_preds_webcam, inputs=inputs_webcam, outputs=outputs_webcam, title="Webcam Object Detection" ) gr.TabbedInterface( [interface_image, interface_video, interface_webcam], tab_names=['Image Inference', 'Video Inference', 'Webcam Inference'] ).queue().launch()