kurianbenoy commited on
Commit
c165076
1 Parent(s): 68efc4a

Create app.py file

Browse files
Files changed (1) hide show
  1. app.py +44 -0
app.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio
2
+ import torchaudio
3
+ from fastai.vision.all import *
4
+ from fastai.learner import load_learner
5
+ from torchvision.utils import save_image
6
+ from huggingface_hub import hf_hub_download
7
+
8
+
9
+ model = load_learner(
10
+ hf_hub_download("kurianbenoy/music_genre_classification_baseline", "model.pkl")
11
+ )
12
+
13
+ EXAMPLES_PATH = Path("./examples")
14
+ labels = model.dls.vocab
15
+
16
+ interface_options = {
17
+ "title": "Music Genre Classification",
18
+ "description": "A simple baseline model for classifying music genres with fast.ai on [Kaggle competition data](https://www.kaggle.com/competitions/kaggle-pog-series-s01e02/data)",
19
+ "examples": [f"{EXAMPLES_PATH}/{f.name}" for f in EXAMPLES_PATH.iterdir()],
20
+ "interpretation": "default",
21
+ "layout": "horizontal",
22
+ "theme": "default",
23
+ }
24
+
25
+
26
+ def predict(img):
27
+ img = PILImage.create(img)
28
+ _pred, _pred_w_idx, probs = model.predict(img)
29
+ labels_probs = {labels[i]: float(probs[i]) for i, _ in enumerate(labels)}
30
+ return labels_probs
31
+
32
+
33
+ demo = gradio.Interface(
34
+ fn=predict,
35
+ inputs=gradio.inputs.Image(shape=(512, 512)),
36
+ outputs=gradio.outputs.Label(num_top_classes=5),
37
+ )
38
+
39
+ launch_options = {
40
+ "enable_queue": True,
41
+ "share": False,
42
+ }
43
+
44
+ demo.launch(**launch_options)