Spaces:
Sleeping
Sleeping
File size: 9,765 Bytes
2be9de8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
from pathlib import Path
import io
import json
import math
import statistics
import sys
import time
from datasets import concatenate_datasets, Dataset
from datasets import load_dataset
from huggingface_hub import hf_hub_url
import pandas as pd
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from evaluate import load
# 1. record each file name included
# 1.1 read different file formats depending on parameters (i.e., filetype)
# 2. determine column types and report how many rows for each type (format check)
# (in a well-formatted dataset, each column should only have one type)
# 3. report on the null values
# 4. for certain column types, report statistics
# 4.1 uniqueness: if all rows are of a small number of <string> values, treat the column as 'categorical' < 10.
# 4.2 strings: length ranges
# 4.3 lists: length ranges
# 4.3 int/float/double: their percentiles, min, max, mean
CELL_TYPES_LENGTH = ["<class 'str'>", "<class 'list'>"]
CELL_TYPES_NUMERIC = ["<class 'int'>", "<class 'float'>"]
PERCENTILES = [1, 5, 10, 25, 50, 100, 250, 500, 750, 900, 950, 975, 990, 995, 999]
def read_data(all_files, filetype):
df = None
func_name = ""
if filetype in ["parquet", "csv", "json"]:
if filetype == "parquet":
func_name = pd.read_parquet
elif filetype == "csv":
func_name = pd.read_csv
elif filetype == "json":
func_name = pd.read_json
df = pd.concat(func_name(f) for f in all_files)
elif filetype == "arrow":
ds = concatenate_datasets([Dataset.from_file(str(fname)) for fname in all_files])
df = pd.DataFrame(data=ds)
elif filetype == "jsonl":
func_name = pd.read_json
all_lines = []
for fname in all_files:
with open(fname, "r") as f:
all_lines.extend(f.readlines())
df = pd.concat([pd.DataFrame.from_dict([json.loads(line)]) for line in all_lines])
return df
def compute_cell_length_ranges(cell_lengths, cell_unique_string_values):
cell_length_ranges = {}
cell_length_ranges = {}
string_categorical = {}
# this is probably a 'categorical' (i.e., 'classes' in HuggingFace) value
# with few unique items (need to check that while reading the cell),
# so no need to treat it as a normal string
if len(cell_unique_string_values) > 0 and len(cell_unique_string_values) <= 10:
string_categorical = str(len(cell_unique_string_values)) + " class(es)"
elif cell_lengths:
cell_lengths = sorted(cell_lengths)
min_val = cell_lengths[0]
max_val = cell_lengths[-1]
distance = math.ceil((max_val - min_val) / 10.0)
ranges = []
if min_val != max_val:
for j in range(min_val, max_val, distance):
ranges.append(j)
for j in range(len(ranges)-1):
cell_length_ranges[str(ranges[j]) + "-" + str(ranges[j+1])] = 0
ranges.append(max_val)
j = 1
c = 0
for k in cell_lengths:
if j == len(ranges):
c += 1
elif k < ranges[j]:
c += 1
else:
cell_length_ranges[str(ranges[j-1]) + "-" + str(ranges[j])] = c
j += 1
c = 1
cell_length_ranges[str(ranges[j-1]) + "-" + str(max_val)] = c
else:
ranges = [min_val]
c = 0
for k in cell_lengths:
c += 1
cell_length_ranges[str(min_val)] = c
return cell_length_ranges, string_categorical
def _compute_percentiles(values, percentiles=PERCENTILES):
result = {}
quantiles = statistics.quantiles(values, n=max(PERCENTILES)+1, method='inclusive')
for p in percentiles:
result[p/10] = quantiles[p-1]
return result
def compute_cell_value_statistics(cell_values):
stats = {}
if cell_values:
cell_values = sorted(cell_values)
stats["min"] = cell_values[0]
stats["max"] = cell_values[-1]
stats["mean"] = statistics.mean(cell_values)
stats["stdev"] = statistics.stdev(cell_values)
stats["variance"] = statistics.variance(cell_values)
stats["percentiles"] = _compute_percentiles(cell_values)
return stats
def check_null(cell, cell_type):
if cell_type == "<class 'float'>":
if math.isnan(cell):
return True
elif cell is None:
return True
return False
def compute_property(data_path, glob, filetype):
output = {}
data_dir = Path(data_path)
filenames = []
all_files = list(data_dir.glob(glob))
for f in all_files:
print(str(f))
base_fname = str(f)[len(str(data_path)):]
if not data_path.endswith("/"):
base_fname = base_fname[1:]
filenames.append(base_fname)
output["filenames"] = filenames
df = read_data(all_files, filetype)
column_info = {}
for col_name in df.columns:
if col_name not in column_info:
column_info[col_name] = {}
cell_types = {}
cell_lengths = {}
cell_unique_string_values = {}
cell_values = {}
null_count = 0
col_values = df[col_name].to_list()
for cell in col_values:
# for index, row in df.iterrows():
# cell = row[col_name]
cell_type = str(type(cell))
cell_type = str(type(cell))
# print(cell, cell_type)
if check_null(cell, cell_type):
null_count += 1
continue
if cell_type not in cell_types:
cell_types[cell_type] = 1
else:
cell_types[cell_type] += 1
if cell_type in CELL_TYPES_LENGTH:
cell_length = len(cell)
if cell_type not in cell_lengths:
cell_lengths[cell_type] = []
cell_lengths[cell_type].append(cell_length)
if cell_type == "<class 'str'>" and cell not in cell_unique_string_values:
cell_unique_string_values[cell] = True
elif cell_type in CELL_TYPES_NUMERIC:
if cell_type not in cell_values:
cell_values[cell_type] = []
cell_values[cell_type].append(cell)
else:
print(cell_type)
clrs = {}
ccs = {}
for cell_type in CELL_TYPES_LENGTH:
if cell_type in cell_lengths:
clr, cc = compute_cell_length_ranges(cell_lengths[cell_type], cell_unique_string_values)
clrs[cell_type] = clr
ccs[cell_type] = cc
css = {}
for cell_type in CELL_TYPES_NUMERIC:
if cell_type in cell_values:
cell_stats = compute_cell_value_statistics(cell_values[cell_type])
css[cell_type] = cell_stats
column_info[col_name]["cell_types"] = cell_types
column_info[col_name]["cell_length_ranges"] = clrs
column_info[col_name]["cell_categories"] = ccs
column_info[col_name]["cell_stats"] = css
column_info[col_name]["cell_missing"] = null_count
output["column_info"] = column_info
output["number_of_items"] = len(df)
output["timestamp"] = time.time()
return output
def preprocess_function(examples):
return tokenizer(examples["sentence1"], examples["sentence2"], truncation=True)
def compute_metrics(eval_pred):
predictions, labels = eval_pred
predictions = np.argmax(predictions, axis=1)
return metric.compute(predictions=predictions, references=labels)
def compute_model_card_evaluation_results(tokenizer, model_checkpoint, raw_datasets, metric):
tokenized_datasets = raw_datasets.map(preprocess_function, batched=True)
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=2)
batch_size = 16
args = TrainingArguments(
"test-glue",
evaluation_strategy = "epoch",
learning_rate=5e-5,
seed=42,
lr_scheduler_type="linear",
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
num_train_epochs=3,
weight_decay=0.01,
load_best_model_at_end=False,
metric_for_best_model="accuracy",
report_to="none"
)
trainer = Trainer(
model,
args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
tokenizer=tokenizer,
compute_metrics=compute_metrics
)
result = trainer.evaluate()
return result
if __name__ == "__main__":
in_container = True
if len(sys.argv) > 1:
model_checkpoint = sys.argv[1]
dataset_name = sys.argv[2]
metric = sys.argv[3]
in_container = False
else:
model_checkpoint = "sgugger/glue-mrpc"
dataset_name = "nyu-mll/glue"
metric = ["glue", "mrpc"]
in_container = False
print(model_checkpoint, dataset_name, metric)
model_checkpoint = model_checkpoint
raw_datasets = load_dataset(dataset_name, "mrpc")
metric = load("glue", "mrpc")
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
output = compute_model_card_evaluation_results(tokenizer, model_checkpoint, raw_datasets, metric)
print(json.dumps(output))
if in_container:
with open("/tmp/outputs/computation_result.json", "w") as f:
json.dump(output, f, indent=4, sort_keys=True)
else:
print(json.dumps(output, indent=4, sort_keys=True)) |