File size: 9,765 Bytes
2be9de8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
from pathlib import Path
import io
import json
import math
import statistics
import sys
import time

from datasets import concatenate_datasets, Dataset
from datasets import load_dataset

from huggingface_hub import hf_hub_url

import pandas as pd
import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
from evaluate import load


# 1. record each file name included
# 1.1 read different file formats depending on parameters (i.e., filetype)
# 2. determine column types and report how many rows for each type (format check)
# (in a well-formatted dataset, each column should only have one type)
# 3. report on the null values
# 4. for certain column types, report statistics
# 4.1 uniqueness: if all rows are of a small number of <string> values, treat the column as 'categorical' < 10.
# 4.2 strings: length ranges
# 4.3 lists: length ranges
# 4.3 int/float/double: their percentiles, min, max, mean

CELL_TYPES_LENGTH = ["<class 'str'>", "<class 'list'>"]
CELL_TYPES_NUMERIC = ["<class 'int'>", "<class 'float'>"]

PERCENTILES = [1, 5, 10, 25, 50, 100, 250, 500, 750, 900, 950, 975, 990, 995, 999]

def read_data(all_files, filetype):
    df = None
    
    func_name = ""
    
    if filetype in ["parquet", "csv", "json"]:
        if filetype == "parquet":
            func_name = pd.read_parquet
        elif filetype == "csv":
            func_name = pd.read_csv
        elif filetype == "json":
            func_name = pd.read_json
        
        df = pd.concat(func_name(f) for f in all_files)

    elif filetype == "arrow":
        ds = concatenate_datasets([Dataset.from_file(str(fname)) for fname in all_files])
        df = pd.DataFrame(data=ds)
        
    elif filetype == "jsonl":
        func_name = pd.read_json
        all_lines = []
        for fname in all_files:
            with open(fname, "r") as f:
                all_lines.extend(f.readlines())

        df = pd.concat([pd.DataFrame.from_dict([json.loads(line)]) for line in all_lines])

    return df

def compute_cell_length_ranges(cell_lengths, cell_unique_string_values):
    cell_length_ranges = {}
    cell_length_ranges = {}
    string_categorical = {}
    # this is probably a 'categorical' (i.e., 'classes' in HuggingFace) value 
    # with few unique items (need to check that while reading the cell),
    # so no need to treat it as a normal string
    if len(cell_unique_string_values) > 0 and len(cell_unique_string_values) <= 10:
        string_categorical = str(len(cell_unique_string_values)) + " class(es)"

    elif cell_lengths:
        cell_lengths = sorted(cell_lengths)
        min_val = cell_lengths[0]
        max_val = cell_lengths[-1]
        distance = math.ceil((max_val - min_val) / 10.0)
        ranges = []
        if min_val != max_val:
            for j in range(min_val, max_val, distance):
                ranges.append(j)
            for j in range(len(ranges)-1):
                cell_length_ranges[str(ranges[j]) + "-" + str(ranges[j+1])] = 0
            ranges.append(max_val)

            j = 1
            c = 0
            for k in cell_lengths:
                if j == len(ranges):
                    c += 1
                elif k < ranges[j]:
                    c += 1
                else:
                    cell_length_ranges[str(ranges[j-1]) + "-" + str(ranges[j])] = c
                    j += 1
                    c = 1

            cell_length_ranges[str(ranges[j-1]) + "-" + str(max_val)] = c

        else:
            ranges = [min_val]
            c = 0
            for k in cell_lengths:
                c += 1
            cell_length_ranges[str(min_val)] = c

    return cell_length_ranges, string_categorical

def _compute_percentiles(values, percentiles=PERCENTILES):
    result = {}
    quantiles = statistics.quantiles(values, n=max(PERCENTILES)+1, method='inclusive')
    for p in percentiles:
        result[p/10] = quantiles[p-1]
    return result

def compute_cell_value_statistics(cell_values):
    stats = {}
    if cell_values:
        cell_values = sorted(cell_values)

        stats["min"] = cell_values[0]
        stats["max"] = cell_values[-1]
        stats["mean"] = statistics.mean(cell_values)
        stats["stdev"] = statistics.stdev(cell_values)
        stats["variance"] = statistics.variance(cell_values)

        stats["percentiles"] = _compute_percentiles(cell_values)

    return stats

def check_null(cell, cell_type):
    if cell_type == "<class 'float'>":
        if math.isnan(cell):
            return True
    elif cell is None:
        return True
    return False

def compute_property(data_path, glob, filetype):
    output = {}

    data_dir = Path(data_path)

    filenames = []
    all_files = list(data_dir.glob(glob))
    for f in all_files:
        print(str(f))
        base_fname = str(f)[len(str(data_path)):]
        if not data_path.endswith("/"):
            base_fname = base_fname[1:]
        filenames.append(base_fname)

    output["filenames"] = filenames

    df = read_data(all_files, filetype)

    column_info = {}

    for col_name in df.columns:
        if col_name not in column_info:
            column_info[col_name] = {}

        cell_types = {}
    
        cell_lengths = {}
        cell_unique_string_values = {}
        cell_values = {}
        null_count = 0
        col_values = df[col_name].to_list()
        for cell in col_values:
        # for index, row in df.iterrows():
        #     cell = row[col_name]
            cell_type = str(type(cell))
            cell_type = str(type(cell))
            # print(cell, cell_type)
            if check_null(cell, cell_type):
                null_count += 1
                continue

            if cell_type not in cell_types:
                cell_types[cell_type] = 1
            else:
                cell_types[cell_type] += 1

            if cell_type in CELL_TYPES_LENGTH:
                cell_length = len(cell)
                if cell_type not in cell_lengths:
                    cell_lengths[cell_type] = []
                
                cell_lengths[cell_type].append(cell_length)
                if cell_type == "<class 'str'>" and cell not in cell_unique_string_values:
                    cell_unique_string_values[cell] = True

            elif cell_type in CELL_TYPES_NUMERIC:
                if cell_type not in cell_values:
                    cell_values[cell_type] = []

                cell_values[cell_type].append(cell)

            else:
                print(cell_type)

        clrs = {}
        ccs = {}
        for cell_type in CELL_TYPES_LENGTH:
            if cell_type in cell_lengths:
                clr, cc = compute_cell_length_ranges(cell_lengths[cell_type], cell_unique_string_values)
                clrs[cell_type] = clr
                ccs[cell_type] = cc

        css = {}
        for cell_type in CELL_TYPES_NUMERIC:
            if cell_type in cell_values:
                cell_stats = compute_cell_value_statistics(cell_values[cell_type])
                css[cell_type] = cell_stats

        column_info[col_name]["cell_types"] = cell_types
        column_info[col_name]["cell_length_ranges"] = clrs
        column_info[col_name]["cell_categories"] = ccs
        column_info[col_name]["cell_stats"] = css
        column_info[col_name]["cell_missing"] = null_count

    output["column_info"] = column_info
    output["number_of_items"] = len(df)
    output["timestamp"] = time.time()
    
    return output

def preprocess_function(examples):
    return tokenizer(examples["sentence1"], examples["sentence2"], truncation=True)

def compute_metrics(eval_pred):
    predictions, labels = eval_pred
    predictions = np.argmax(predictions, axis=1)
    return metric.compute(predictions=predictions, references=labels)

def compute_model_card_evaluation_results(tokenizer, model_checkpoint, raw_datasets, metric):
    tokenized_datasets = raw_datasets.map(preprocess_function, batched=True)
    model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=2)
    batch_size = 16
    args = TrainingArguments(
        "test-glue",
        evaluation_strategy = "epoch",
        learning_rate=5e-5,
        seed=42,
        lr_scheduler_type="linear",
        per_device_train_batch_size=batch_size,
        per_device_eval_batch_size=batch_size,
        num_train_epochs=3,
        weight_decay=0.01,
        load_best_model_at_end=False,
        metric_for_best_model="accuracy",
        report_to="none"
        )

    trainer = Trainer(
        model,
        args,
        train_dataset=tokenized_datasets["train"],
        eval_dataset=tokenized_datasets["validation"],
        tokenizer=tokenizer,
        compute_metrics=compute_metrics
    )
    result = trainer.evaluate()
    return result


if __name__ == "__main__":
    
    in_container = True
    if len(sys.argv) > 1:
        model_checkpoint = sys.argv[1]
        dataset_name = sys.argv[2]
        metric = sys.argv[3]
        in_container = False
    else:
        model_checkpoint = "sgugger/glue-mrpc"
        dataset_name = "nyu-mll/glue" 
        metric = ["glue", "mrpc"]
        in_container = False

    print(model_checkpoint, dataset_name, metric)
    

    model_checkpoint = model_checkpoint
    raw_datasets = load_dataset(dataset_name, "mrpc")
    metric = load("glue", "mrpc")
    tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
    output = compute_model_card_evaluation_results(tokenizer, model_checkpoint, raw_datasets, metric)
    print(json.dumps(output))

    if in_container:
        with open("/tmp/outputs/computation_result.json", "w") as f:
            json.dump(output, f, indent=4, sort_keys=True)
    else:
        print(json.dumps(output, indent=4, sort_keys=True))