Spaces:
Sleeping
Sleeping
krishnapal2308
commited on
Commit
·
4582e37
1
Parent(s):
7fbe5c5
manual to pipeline
Browse files- vit_gpt2.py +30 -16
vit_gpt2.py
CHANGED
@@ -1,25 +1,39 @@
|
|
1 |
-
from transformers import
|
2 |
from PIL import Image
|
3 |
|
4 |
-
model = VisionEncoderDecoderModel.from_pretrained("vit-gpt2-image-captioning")
|
5 |
-
feature_extractor = ViTImageProcessor.from_pretrained("vit-gpt2-image-captioning")
|
6 |
-
tokenizer = AutoTokenizer.from_pretrained("vit-gpt2-image-captioning")
|
7 |
-
|
8 |
-
max_length = 16
|
9 |
-
num_beams = 4
|
10 |
-
gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
11 |
-
|
12 |
|
13 |
def predict_step(img_array):
|
|
|
14 |
i_image = Image.fromarray(img_array)
|
15 |
|
16 |
if i_image.mode != "RGB":
|
17 |
i_image = i_image.convert(mode="RGB")
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
from PIL import Image
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
def predict_step(img_array):
|
6 |
+
image_to_text = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
7 |
i_image = Image.fromarray(img_array)
|
8 |
|
9 |
if i_image.mode != "RGB":
|
10 |
i_image = i_image.convert(mode="RGB")
|
11 |
|
12 |
+
prediction = image_to_text(i_image)
|
13 |
+
return prediction[0]['generated_text']
|
14 |
+
|
15 |
+
# from transformers import VisionEncoderDecoderModel, ViTImageProcessor, AutoTokenizer
|
16 |
+
# from PIL import Image
|
17 |
+
#
|
18 |
+
# model = VisionEncoderDecoderModel.from_pretrained("vit-gpt2-image-captioning")
|
19 |
+
# feature_extractor = ViTImageProcessor.from_pretrained("vit-gpt2-image-captioning")
|
20 |
+
# tokenizer = AutoTokenizer.from_pretrained("vit-gpt2-image-captioning")
|
21 |
+
#
|
22 |
+
# max_length = 16
|
23 |
+
# num_beams = 4
|
24 |
+
# gen_kwargs = {"max_length": max_length, "num_beams": num_beams}
|
25 |
+
#
|
26 |
+
#
|
27 |
+
# def predict_step(img_array):
|
28 |
+
# i_image = Image.fromarray(img_array)
|
29 |
+
#
|
30 |
+
# if i_image.mode != "RGB":
|
31 |
+
# i_image = i_image.convert(mode="RGB")
|
32 |
+
#
|
33 |
+
# pixel_values = feature_extractor(images=i_image, return_tensors="pt", do_normalize=True).pixel_values
|
34 |
+
#
|
35 |
+
# output_ids = model.generate(pixel_values, **gen_kwargs)
|
36 |
+
#
|
37 |
+
# pred = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
38 |
+
# pred = [p.strip() for p in pred]
|
39 |
+
# return pred
|