import streamlit as st from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline from gtts import gTTS import io from PIL import Image # Load the image captioning model caption_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") # Load the text generation model text_generation_model = AutoModelForCausalLM.from_pretrained("gpt2") tokenizer = AutoTokenizer.from_pretrained("gpt2") def generate_caption(image): # Generate the caption for the uploaded image caption = caption_model(image)[0]["generated_text"] return caption def generate_story(caption): # Generate the story based on the caption input_ids = tokenizer.encode(caption, return_tensors="pt") output = text_generation_model.generate(input_ids, max_length=100, num_return_sequences=1) story = tokenizer.decode(output[0], skip_special_tokens=True) return story def convert_to_audio(story): # Convert the story to audio using gTTS tts = gTTS(text=story, lang="en") audio_bytes = io.BytesIO() tts.write_to_fp(audio_bytes) audio_bytes.seek(0) return audio_bytes def main(): st.title("Storytelling Application") # File uploader for the image (restricted to JPG) uploaded_image = st.file_uploader("Upload an image", type=["jpg"]) if uploaded_image is not None: # Convert the uploaded image to PIL image image = Image.open(uploaded_image) # Display the uploaded image st.image(image, caption="Uploaded Image", use_column_width=True) # Generate the caption for the image caption = generate_caption(image) st.subheader("Generated Caption:") st.write(caption) # Generate the story based on the caption story = generate_story(caption) st.subheader("Generated Story:") st.write(story) # Convert the story to audio audio_bytes = convert_to_audio(story) # Display the audio player st.audio(audio_bytes, format="audio/mp3") if __name__ == "__main__": main()