Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from torchvision.models import resnet50, ResNet50_Weights | |
from PIL import Image | |
import tempfile | |
from gtts import gTTS | |
import whisper | |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
# ----- 画像認識用モデル (ResNet-50) ----- | |
weights = ResNet50_Weights.IMAGENET1K_V2 | |
img_model = resnet50(weights=weights) | |
img_model.eval() | |
img_transform = weights.transforms() | |
imagenet_classes = weights.meta["categories"] | |
def image_classify(img: Image.Image): | |
img_tensor = img_transform(img).unsqueeze(0) | |
with torch.no_grad(): | |
outputs = img_model(img_tensor) | |
probabilities = torch.nn.functional.softmax(outputs[0], dim=0) | |
top5_prob, top5_catid = torch.topk(probabilities, 5) | |
result = {imagenet_classes[top5_catid[i]]: float(top5_prob[i]) for i in range(5)} | |
return result | |
model_name = "cyberagent/open-calm-1b" | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, device_map="auto", torch_dtype=torch.float16 | |
) | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_name, use_fast=True, trust_remote_code=True | |
) | |
text_gen_pipeline = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer, | |
max_length=128, | |
temperature=0.7, | |
top_p=0.9, | |
pad_token_id=tokenizer.eos_token_id, | |
) | |
# ----- 言語モデル (LM) ----- | |
def generate_text(prompt): | |
# promptに基づき続きのテキストを生成 | |
result = text_gen_pipeline(prompt, do_sample=True, num_return_sequences=1) | |
generated_text = result[0]["generated_text"] | |
# prompt部分を含めた全文が返るので、prompt部分はそのままでOK | |
return generated_text | |
# ----- 音声合成 (TTS) ----- | |
def text_to_speech(text, lang="ja"): | |
tts = gTTS(text=text, lang=lang) | |
with tempfile.NamedTemporaryFile(suffix=".mp3", delete=False) as fp: | |
tts.save(fp.name) | |
return fp.name | |
# ----- 音声認識 (ASR) ----- | |
whisper_model = whisper.load_model("small") | |
def speech_to_text(audio_file): | |
result = whisper_model.transcribe(audio_file) | |
return result["text"] | |
# ----- Gradio UI ----- | |
def run(): | |
with gr.Blocks() as demo: | |
gr.Markdown("# 画像認識・言語モデル・音声合成・音声認識") | |
with gr.Tabs(): | |
with gr.TabItem("画像認識"): | |
gr.Markdown("### 画像認識 (ResNet-50)") | |
gr.Interface( | |
fn=image_classify, | |
inputs=gr.Image(type="pil"), | |
outputs=gr.Label(num_top_classes=5), | |
description="画像をアップロードして分類します。(ImageNet)", | |
) | |
with gr.TabItem("言語モデル"): | |
gr.Markdown("### 言語モデル") | |
lm_output = gr.Textbox(label="生成結果") | |
user_input = gr.Textbox(label="入力テキスト") | |
send_btn = gr.Button("送信") | |
send_btn.click(generate_text, inputs=user_input, outputs=lm_output) | |
with gr.TabItem("音声合成"): | |
gr.Markdown("### 音声合成 (gTTS)") | |
tts_input = gr.Textbox(label="音声にしたいテキスト") | |
tts_output = gr.Audio(label="合成音声") | |
tts_button = gr.Button("合成") | |
tts_button.click(text_to_speech, inputs=tts_input, outputs=tts_output) | |
with gr.TabItem("音声認識"): | |
gr.Markdown("### 音声認識 (Whisper)") | |
gr.Interface( | |
fn=speech_to_text, | |
inputs=gr.Audio(sources=["microphone", "upload"], type="filepath"), | |
outputs="text", | |
description="マイクから録音して文字起こし", | |
) | |
demo.launch() | |
if __name__ == "__main__": | |
run() |