Spaces:
Running
Running
import gradio as gr | |
import numpy as np | |
from PIL import Image | |
from transformers import AutoProcessor, BlipForConditionalGeneration | |
# Load the pretrained processor and model | |
processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") | |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") | |
def caption_image(input_image: np.ndarray): | |
# Convert numpy array to PIL Image and convert to RGB | |
raw_image = Image.fromarray(input_image).convert('RGB') | |
# Process the image | |
inputs = processor(raw_image, return_tensors="pt") | |
# Generate a caption for the image | |
out = model.generate(**inputs, max_length=50) | |
# Decode the generated tokens to text | |
caption = processor.decode(out[0], skip_special_tokens=True) | |
return caption | |
iface = gr.Interface( | |
fn=caption_image, | |
inputs=gr.Image(), | |
outputs="text", | |
title="Image Captioning - Kliz Andrei Millares™", | |
description="Generate descriptive captions for your images using the BLIP model, brought to you by Kliz Andrei Millares™." | |
) | |
iface.launch() | |