File size: 15,900 Bytes
d59aeff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
# -*- coding: utf-8 -*-

"""Network related utility tools."""

import logging
from typing import Dict

import numpy as np
import torch


def to_device(m, x):
    """Send tensor into the device of the module.

    Args:
        m (torch.nn.Module): Torch module.
        x (Tensor): Torch tensor.

    Returns:
        Tensor: Torch tensor located in the same place as torch module.

    """
    assert isinstance(m, torch.nn.Module)
    device = next(m.parameters()).device
    return x.to(device)


def pad_list(xs, pad_value):
    """Perform padding for the list of tensors.

    Args:
        xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)].
        pad_value (float): Value for padding.

    Returns:
        Tensor: Padded tensor (B, Tmax, `*`).

    Examples:
        >>> x = [torch.ones(4), torch.ones(2), torch.ones(1)]
        >>> x
        [tensor([1., 1., 1., 1.]), tensor([1., 1.]), tensor([1.])]
        >>> pad_list(x, 0)
        tensor([[1., 1., 1., 1.],
                [1., 1., 0., 0.],
                [1., 0., 0., 0.]])

    """
    n_batch = len(xs)
    max_len = max(x.size(0) for x in xs)
    pad = xs[0].new(n_batch, max_len, *xs[0].size()[1:]).fill_(pad_value)

    for i in range(n_batch):
        pad[i, :xs[i].size(0)] = xs[i]

    return pad


def make_pad_mask(lengths, xs=None, length_dim=-1):
    """Make mask tensor containing indices of padded part.

    Args:
        lengths (LongTensor or List): Batch of lengths (B,).
        xs (Tensor, optional): The reference tensor. If set, masks will be the same shape as this tensor.
        length_dim (int, optional): Dimension indicator of the above tensor. See the example.

    Returns:
        Tensor: Mask tensor containing indices of padded part.
                dtype=torch.uint8 in PyTorch 1.2-
                dtype=torch.bool in PyTorch 1.2+ (including 1.2)

    Examples:
        With only lengths.

        >>> lengths = [5, 3, 2]
        >>> make_non_pad_mask(lengths)
        masks = [[0, 0, 0, 0 ,0],
                 [0, 0, 0, 1, 1],
                 [0, 0, 1, 1, 1]]

        With the reference tensor.

        >>> xs = torch.zeros((3, 2, 4))
        >>> make_pad_mask(lengths, xs)
        tensor([[[0, 0, 0, 0],
                 [0, 0, 0, 0]],
                [[0, 0, 0, 1],
                 [0, 0, 0, 1]],
                [[0, 0, 1, 1],
                 [0, 0, 1, 1]]], dtype=torch.uint8)
        >>> xs = torch.zeros((3, 2, 6))
        >>> make_pad_mask(lengths, xs)
        tensor([[[0, 0, 0, 0, 0, 1],
                 [0, 0, 0, 0, 0, 1]],
                [[0, 0, 0, 1, 1, 1],
                 [0, 0, 0, 1, 1, 1]],
                [[0, 0, 1, 1, 1, 1],
                 [0, 0, 1, 1, 1, 1]]], dtype=torch.uint8)

        With the reference tensor and dimension indicator.

        >>> xs = torch.zeros((3, 6, 6))
        >>> make_pad_mask(lengths, xs, 1)
        tensor([[[0, 0, 0, 0, 0, 0],
                 [0, 0, 0, 0, 0, 0],
                 [0, 0, 0, 0, 0, 0],
                 [0, 0, 0, 0, 0, 0],
                 [0, 0, 0, 0, 0, 0],
                 [1, 1, 1, 1, 1, 1]],
                [[0, 0, 0, 0, 0, 0],
                 [0, 0, 0, 0, 0, 0],
                 [0, 0, 0, 0, 0, 0],
                 [1, 1, 1, 1, 1, 1],
                 [1, 1, 1, 1, 1, 1],
                 [1, 1, 1, 1, 1, 1]],
                [[0, 0, 0, 0, 0, 0],
                 [0, 0, 0, 0, 0, 0],
                 [1, 1, 1, 1, 1, 1],
                 [1, 1, 1, 1, 1, 1],
                 [1, 1, 1, 1, 1, 1],
                 [1, 1, 1, 1, 1, 1]]], dtype=torch.uint8)
        >>> make_pad_mask(lengths, xs, 2)
        tensor([[[0, 0, 0, 0, 0, 1],
                 [0, 0, 0, 0, 0, 1],
                 [0, 0, 0, 0, 0, 1],
                 [0, 0, 0, 0, 0, 1],
                 [0, 0, 0, 0, 0, 1],
                 [0, 0, 0, 0, 0, 1]],
                [[0, 0, 0, 1, 1, 1],
                 [0, 0, 0, 1, 1, 1],
                 [0, 0, 0, 1, 1, 1],
                 [0, 0, 0, 1, 1, 1],
                 [0, 0, 0, 1, 1, 1],
                 [0, 0, 0, 1, 1, 1]],
                [[0, 0, 1, 1, 1, 1],
                 [0, 0, 1, 1, 1, 1],
                 [0, 0, 1, 1, 1, 1],
                 [0, 0, 1, 1, 1, 1],
                 [0, 0, 1, 1, 1, 1],
                 [0, 0, 1, 1, 1, 1]]], dtype=torch.uint8)

    """
    if length_dim == 0:
        raise ValueError('length_dim cannot be 0: {}'.format(length_dim))

    if not isinstance(lengths, list):
        lengths = lengths.tolist()
    bs = int(len(lengths))
    if xs is None:
        maxlen = int(max(lengths))
    else:
        maxlen = xs.size(length_dim)

    seq_range = torch.arange(0, maxlen, dtype=torch.int64)
    seq_range_expand = seq_range.unsqueeze(0).expand(bs, maxlen)
    seq_length_expand = seq_range_expand.new(lengths).unsqueeze(-1)
    mask = seq_range_expand >= seq_length_expand

    if xs is not None:
        assert xs.size(0) == bs, (xs.size(0), bs)

        if length_dim < 0:
            length_dim = xs.dim() + length_dim
        # ind = (:, None, ..., None, :, , None, ..., None)
        ind = tuple(slice(None) if i in (0, length_dim) else None
                    for i in range(xs.dim()))
        mask = mask[ind].expand_as(xs).to(xs.device)
    return mask


def make_non_pad_mask(lengths, xs=None, length_dim=-1):
    """Make mask tensor containing indices of non-padded part.

    Args:
        lengths (LongTensor or List): Batch of lengths (B,).
        xs (Tensor, optional): The reference tensor. If set, masks will be the same shape as this tensor.
        length_dim (int, optional): Dimension indicator of the above tensor. See the example.

    Returns:
        ByteTensor: mask tensor containing indices of padded part.
                    dtype=torch.uint8 in PyTorch 1.2-
                    dtype=torch.bool in PyTorch 1.2+ (including 1.2)

    Examples:
        With only lengths.

        >>> lengths = [5, 3, 2]
        >>> make_non_pad_mask(lengths)
        masks = [[1, 1, 1, 1 ,1],
                 [1, 1, 1, 0, 0],
                 [1, 1, 0, 0, 0]]

        With the reference tensor.

        >>> xs = torch.zeros((3, 2, 4))
        >>> make_non_pad_mask(lengths, xs)
        tensor([[[1, 1, 1, 1],
                 [1, 1, 1, 1]],
                [[1, 1, 1, 0],
                 [1, 1, 1, 0]],
                [[1, 1, 0, 0],
                 [1, 1, 0, 0]]], dtype=torch.uint8)
        >>> xs = torch.zeros((3, 2, 6))
        >>> make_non_pad_mask(lengths, xs)
        tensor([[[1, 1, 1, 1, 1, 0],
                 [1, 1, 1, 1, 1, 0]],
                [[1, 1, 1, 0, 0, 0],
                 [1, 1, 1, 0, 0, 0]],
                [[1, 1, 0, 0, 0, 0],
                 [1, 1, 0, 0, 0, 0]]], dtype=torch.uint8)

        With the reference tensor and dimension indicator.

        >>> xs = torch.zeros((3, 6, 6))
        >>> make_non_pad_mask(lengths, xs, 1)
        tensor([[[1, 1, 1, 1, 1, 1],
                 [1, 1, 1, 1, 1, 1],
                 [1, 1, 1, 1, 1, 1],
                 [1, 1, 1, 1, 1, 1],
                 [1, 1, 1, 1, 1, 1],
                 [0, 0, 0, 0, 0, 0]],
                [[1, 1, 1, 1, 1, 1],
                 [1, 1, 1, 1, 1, 1],
                 [1, 1, 1, 1, 1, 1],
                 [0, 0, 0, 0, 0, 0],
                 [0, 0, 0, 0, 0, 0],
                 [0, 0, 0, 0, 0, 0]],
                [[1, 1, 1, 1, 1, 1],
                 [1, 1, 1, 1, 1, 1],
                 [0, 0, 0, 0, 0, 0],
                 [0, 0, 0, 0, 0, 0],
                 [0, 0, 0, 0, 0, 0],
                 [0, 0, 0, 0, 0, 0]]], dtype=torch.uint8)
        >>> make_non_pad_mask(lengths, xs, 2)
        tensor([[[1, 1, 1, 1, 1, 0],
                 [1, 1, 1, 1, 1, 0],
                 [1, 1, 1, 1, 1, 0],
                 [1, 1, 1, 1, 1, 0],
                 [1, 1, 1, 1, 1, 0],
                 [1, 1, 1, 1, 1, 0]],
                [[1, 1, 1, 0, 0, 0],
                 [1, 1, 1, 0, 0, 0],
                 [1, 1, 1, 0, 0, 0],
                 [1, 1, 1, 0, 0, 0],
                 [1, 1, 1, 0, 0, 0],
                 [1, 1, 1, 0, 0, 0]],
                [[1, 1, 0, 0, 0, 0],
                 [1, 1, 0, 0, 0, 0],
                 [1, 1, 0, 0, 0, 0],
                 [1, 1, 0, 0, 0, 0],
                 [1, 1, 0, 0, 0, 0],
                 [1, 1, 0, 0, 0, 0]]], dtype=torch.uint8)

    """
    return ~make_pad_mask(lengths, xs, length_dim)


def mask_by_length(xs, lengths, fill=0):
    """Mask tensor according to length.

    Args:
        xs (Tensor): Batch of input tensor (B, `*`).
        lengths (LongTensor or List): Batch of lengths (B,).
        fill (int or float): Value to fill masked part.

    Returns:
        Tensor: Batch of masked input tensor (B, `*`).

    Examples:
        >>> x = torch.arange(5).repeat(3, 1) + 1
        >>> x
        tensor([[1, 2, 3, 4, 5],
                [1, 2, 3, 4, 5],
                [1, 2, 3, 4, 5]])
        >>> lengths = [5, 3, 2]
        >>> mask_by_length(x, lengths)
        tensor([[1, 2, 3, 4, 5],
                [1, 2, 3, 0, 0],
                [1, 2, 0, 0, 0]])

    """
    assert xs.size(0) == len(lengths)
    ret = xs.data.new(*xs.size()).fill_(fill)
    for i, l in enumerate(lengths):
        ret[i, :l] = xs[i, :l]
    return ret


def th_accuracy(pad_outputs, pad_targets, ignore_label):
    """Calculate accuracy.

    Args:
        pad_outputs (Tensor): Prediction tensors (B * Lmax, D).
        pad_targets (LongTensor): Target label tensors (B, Lmax, D).
        ignore_label (int): Ignore label id.

    Returns:
        float: Accuracy value (0.0 - 1.0).

    """
    pad_pred = pad_outputs.view(
        pad_targets.size(0),
        pad_targets.size(1),
        pad_outputs.size(1)).argmax(2)
    mask = pad_targets != ignore_label
    numerator = torch.sum(pad_pred.masked_select(mask) == pad_targets.masked_select(mask))
    denominator = torch.sum(mask)
    return float(numerator) / float(denominator)


def to_torch_tensor(x):
    """Change to torch.Tensor or ComplexTensor from numpy.ndarray.

    Args:
        x: Inputs. It should be one of numpy.ndarray, Tensor, ComplexTensor, and dict.

    Returns:
        Tensor or ComplexTensor: Type converted inputs.

    Examples:
        >>> xs = np.ones(3, dtype=np.float32)
        >>> xs = to_torch_tensor(xs)
        tensor([1., 1., 1.])
        >>> xs = torch.ones(3, 4, 5)
        >>> assert to_torch_tensor(xs) is xs
        >>> xs = {'real': xs, 'imag': xs}
        >>> to_torch_tensor(xs)
        ComplexTensor(
        Real:
        tensor([1., 1., 1.])
        Imag;
        tensor([1., 1., 1.])
        )

    """
    # If numpy, change to torch tensor
    if isinstance(x, np.ndarray):
        if x.dtype.kind == 'c':
            # Dynamically importing because torch_complex requires python3
            from torch_complex.tensor import ComplexTensor
            return ComplexTensor(x)
        else:
            return torch.from_numpy(x)

    # If {'real': ..., 'imag': ...}, convert to ComplexTensor
    elif isinstance(x, dict):
        # Dynamically importing because torch_complex requires python3
        from torch_complex.tensor import ComplexTensor

        if 'real' not in x or 'imag' not in x:
            raise ValueError("has 'real' and 'imag' keys: {}".format(list(x)))
        # Relative importing because of using python3 syntax
        return ComplexTensor(x['real'], x['imag'])

    # If torch.Tensor, as it is
    elif isinstance(x, torch.Tensor):
        return x

    else:
        error = ("x must be numpy.ndarray, torch.Tensor or a dict like "
                 "{{'real': torch.Tensor, 'imag': torch.Tensor}}, "
                 "but got {}".format(type(x)))
        try:
            from torch_complex.tensor import ComplexTensor
        except Exception:
            # If PY2
            raise ValueError(error)
        else:
            # If PY3
            if isinstance(x, ComplexTensor):
                return x
            else:
                raise ValueError(error)


def get_subsample(train_args, mode, arch):
    """Parse the subsampling factors from the training args for the specified `mode` and `arch`.

    Args:
        train_args: argument Namespace containing options.
        mode: one of ('asr', 'mt', 'st')
        arch: one of ('rnn', 'rnn-t', 'rnn_mix', 'rnn_mulenc', 'transformer')

    Returns:
        np.ndarray / List[np.ndarray]: subsampling factors.
    """
    if arch == 'transformer':
        return np.array([1])

    elif mode == 'mt' and arch == 'rnn':
        # +1 means input (+1) and layers outputs (train_args.elayer)
        subsample = np.ones(train_args.elayers + 1, dtype=np.int)
        logging.warning('Subsampling is not performed for machine translation.')
        logging.info('subsample: ' + ' '.join([str(x) for x in subsample]))
        return subsample

    elif (mode == 'asr' and arch in ('rnn', 'rnn-t')) or \
         (mode == 'mt' and arch == 'rnn') or \
         (mode == 'st' and arch == 'rnn'):
        subsample = np.ones(train_args.elayers + 1, dtype=np.int)
        if train_args.etype.endswith("p") and not train_args.etype.startswith("vgg"):
            ss = train_args.subsample.split("_")
            for j in range(min(train_args.elayers + 1, len(ss))):
                subsample[j] = int(ss[j])
        else:
            logging.warning(
                'Subsampling is not performed for vgg*. It is performed in max pooling layers at CNN.')
        logging.info('subsample: ' + ' '.join([str(x) for x in subsample]))
        return subsample

    elif mode == 'asr' and arch == 'rnn_mix':
        subsample = np.ones(train_args.elayers_sd + train_args.elayers + 1, dtype=np.int)
        if train_args.etype.endswith("p") and not train_args.etype.startswith("vgg"):
            ss = train_args.subsample.split("_")
            for j in range(min(train_args.elayers_sd + train_args.elayers + 1, len(ss))):
                subsample[j] = int(ss[j])
        else:
            logging.warning(
                'Subsampling is not performed for vgg*. It is performed in max pooling layers at CNN.')
        logging.info('subsample: ' + ' '.join([str(x) for x in subsample]))
        return subsample

    elif mode == 'asr' and arch == 'rnn_mulenc':
        subsample_list = []
        for idx in range(train_args.num_encs):
            subsample = np.ones(train_args.elayers[idx] + 1, dtype=np.int)
            if train_args.etype[idx].endswith("p") and not train_args.etype[idx].startswith("vgg"):
                ss = train_args.subsample[idx].split("_")
                for j in range(min(train_args.elayers[idx] + 1, len(ss))):
                    subsample[j] = int(ss[j])
            else:
                logging.warning(
                    'Encoder %d: Subsampling is not performed for vgg*. '
                    'It is performed in max pooling layers at CNN.', idx + 1)
            logging.info('subsample: ' + ' '.join([str(x) for x in subsample]))
            subsample_list.append(subsample)
        return subsample_list

    else:
        raise ValueError('Invalid options: mode={}, arch={}'.format(mode, arch))


def rename_state_dict(old_prefix: str, new_prefix: str, state_dict: Dict[str, torch.Tensor]):
    """Replace keys of old prefix with new prefix in state dict."""
    # need this list not to break the dict iterator
    old_keys = [k for k in state_dict if k.startswith(old_prefix)]
    if len(old_keys) > 0:
        logging.warning(f'Rename: {old_prefix} -> {new_prefix}')
    for k in old_keys:
        v = state_dict.pop(k)
        new_k = k.replace(old_prefix, new_prefix)
        state_dict[new_k] = v

def get_activation(act):
    """Return activation function."""
    # Lazy load to avoid unused import
    from .encoder.swish import Swish

    activation_funcs = {
        "hardtanh": torch.nn.Hardtanh,
        "relu": torch.nn.ReLU,
        "selu": torch.nn.SELU,
        "swish": Swish,
    }

    return activation_funcs[act]()