king007's picture
Update app.py
82bb9d0
from PIL import Image, ImageEnhance, ImageOps
import string
from collections import Counter
from itertools import tee, count
import pytesseract
from pytesseract import Output
import json
import pandas as pd
# import matplotlib.pyplot as plt
import cv2
import numpy as np
from transformers import DetrFeatureExtractor
from transformers import TableTransformerForObjectDetection
import torch
import gradio as gr
import pdf2image
def plot_results_detection(
model, image, prob, bboxes_scaled, delta_xmin, delta_ymin, delta_xmax, delta_ymax
):
plt.imshow(image)
ax = plt.gca()
for p, (xmin, ymin, xmax, ymax) in zip(prob, bboxes_scaled.tolist()):
cl = p.argmax()
xmin, ymin, xmax, ymax = (
xmin - delta_xmin,
ymin - delta_ymin,
xmax + delta_xmax,
ymax + delta_ymax,
)
ax.add_patch(
plt.Rectangle(
(xmin, ymin),
xmax - xmin,
ymax - ymin,
fill=False,
color="red",
linewidth=3,
)
)
text = f"{model.config.id2label[cl.item()]}: {p[cl]:0.2f}"
ax.text(
xmin - 20,
ymin - 50,
text,
fontsize=10,
bbox=dict(facecolor="yellow", alpha=0.5),
)
plt.axis("off")
def crop_tables(pil_img, prob, boxes, delta_xmin, delta_ymin, delta_xmax, delta_ymax):
"""
crop_tables and plot_results_detection must have same co-ord shifts because 1 only plots the other one updates co-ordinates
"""
cropped_img_list = []
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
xmin, ymin, xmax, ymax = (
xmin - delta_xmin,
ymin - delta_ymin,
xmax + delta_xmax,
ymax + delta_ymax,
)
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
cropped_img_list.append(cropped_img)
return cropped_img_list
def add_padding(pil_img, top, right, bottom, left, color=(255, 255, 255)):
"""
Image padding as part of TSR pre-processing to prevent missing table edges
"""
width, height = pil_img.size
new_width = width + right + left
new_height = height + top + bottom
result = Image.new(pil_img.mode, (new_width, new_height), color)
result.paste(pil_img, (left, top))
return result
def table_detector(image, THRESHOLD_PROBA):
"""
Table detection using DEtect-object TRansformer pre-trained on 1 million tables
"""
feature_extractor = DetrFeatureExtractor(do_resize=True, size=800, max_size=800)
encoding = feature_extractor(image, return_tensors="pt")
model = TableTransformerForObjectDetection.from_pretrained(
"microsoft/table-transformer-detection"
)
with torch.no_grad():
outputs = model(**encoding)
probas = outputs.logits.softmax(-1)[0, :, :-1]
keep = probas.max(-1).values > THRESHOLD_PROBA
target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0)
postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
bboxes_scaled = postprocessed_outputs[0]["boxes"][keep]
return (model, probas[keep], bboxes_scaled)
def table_struct_recog(image, THRESHOLD_PROBA):
"""
Table structure recognition using DEtect-object TRansformer pre-trained on 1 million tables
"""
feature_extractor = DetrFeatureExtractor(do_resize=True, size=1000, max_size=1000)
encoding = feature_extractor(image, return_tensors="pt")
model = TableTransformerForObjectDetection.from_pretrained(
"microsoft/table-transformer-structure-recognition"
)
with torch.no_grad():
outputs = model(**encoding)
probas = outputs.logits.softmax(-1)[0, :, :-1]
keep = probas.max(-1).values > THRESHOLD_PROBA
target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0)
postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes)
bboxes_scaled = postprocessed_outputs[0]["boxes"][keep]
return (model, probas[keep], bboxes_scaled)
def generate_structure(
model, pil_img, prob, boxes, expand_rowcol_bbox_top, expand_rowcol_bbox_bottom
):
colors = ["red", "blue", "green", "yellow", "orange", "violet"]
"""
Co-ordinates are adjusted here by 3 'pixels'
To plot table pillow image and the TSR bounding boxes on the table
"""
# plt.figure(figsize=(32,20))
# plt.imshow(pil_img)
# ax = plt.gca()
rows = {}
cols = {}
idx = 0
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()):
xmin, ymin, xmax, ymax = xmin, ymin, xmax, ymax
cl = p.argmax()
class_text = model.config.id2label[cl.item()]
text = f"{class_text}: {p[cl]:0.2f}"
# or (class_text == 'table column')
# if (class_text == 'table row') or (class_text =='table projected row header') or (class_text == 'table column'):
# ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,fill=False, color=colors[0], linewidth=2))
# ax.text(xmin-10, ymin-10, text, fontsize=5, bbox=dict(facecolor='yellow', alpha=0.5))
if class_text == "table row":
rows["table row." + str(idx)] = (
xmin,
ymin - expand_rowcol_bbox_top,
xmax,
ymax + expand_rowcol_bbox_bottom,
)
if class_text == "table column":
cols["table column." + str(idx)] = (
xmin,
ymin - expand_rowcol_bbox_top,
xmax,
ymax + expand_rowcol_bbox_bottom,
)
idx += 1
# plt.axis('on')
return rows, cols
def sort_table_featuresv2(rows: dict, cols: dict):
# Sometimes the header and first row overlap, and we need the header bbox not to have first row's bbox inside the headers bbox
rows_ = {
table_feature: (xmin, ymin, xmax, ymax)
for table_feature, (xmin, ymin, xmax, ymax) in sorted(
rows.items(), key=lambda tup: tup[1][1]
)
}
cols_ = {
table_feature: (xmin, ymin, xmax, ymax)
for table_feature, (xmin, ymin, xmax, ymax) in sorted(
cols.items(), key=lambda tup: tup[1][0]
)
}
return rows_, cols_
def individual_table_featuresv2(pil_img, rows: dict, cols: dict):
for k, v in rows.items():
xmin, ymin, xmax, ymax = v
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
rows[k] = xmin, ymin, xmax, ymax, cropped_img
for k, v in cols.items():
xmin, ymin, xmax, ymax = v
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax))
cols[k] = xmin, ymin, xmax, ymax, cropped_img
return rows, cols
def object_to_cellsv2(
master_row: dict,
cols: dict,
expand_rowcol_bbox_top,
expand_rowcol_bbox_bottom,
padd_left,
):
"""Removes redundant bbox for rows&columns and divides each row into cells from columns
Args:
Returns:
"""
cells_img = {}
header_idx = 0
row_idx = 0
previous_xmax_col = 0
new_cols = {}
new_master_row = {}
previous_ymin_row = 0
new_cols = cols
new_master_row = master_row
## Below 2 for loops remove redundant bounding boxes ###
# for k_col, v_col in cols.items():
# xmin_col, _, xmax_col, _, col_img = v_col
# if (np.isclose(previous_xmax_col, xmax_col, atol=5)) or (xmin_col >= xmax_col):
# print('Found a column with double bbox')
# continue
# previous_xmax_col = xmax_col
# new_cols[k_col] = v_col
# for k_row, v_row in master_row.items():
# _, ymin_row, _, ymax_row, row_img = v_row
# if (np.isclose(previous_ymin_row, ymin_row, atol=5)) or (ymin_row >= ymax_row):
# print('Found a row with double bbox')
# continue
# previous_ymin_row = ymin_row
# new_master_row[k_row] = v_row
######################################################
for k_row, v_row in new_master_row.items():
_, _, _, _, row_img = v_row
xmax, ymax = row_img.size
xa, ya, xb, yb = 0, 0, 0, ymax
row_img_list = []
# plt.imshow(row_img)
# st.pyplot()
for idx, kv in enumerate(new_cols.items()):
k_col, v_col = kv
xmin_col, _, xmax_col, _, col_img = v_col
xmin_col, xmax_col = xmin_col - padd_left - 10, xmax_col - padd_left
# plt.imshow(col_img)
# st.pyplot()
# xa + 3 : to remove borders on the left side of the cropped cell
# yb = 3: to remove row information from the above row of the cropped cell
# xb - 3: to remove borders on the right side of the cropped cell
xa = xmin_col
xb = xmax_col
if idx == 0:
xa = 0
if idx == len(new_cols) - 1:
xb = xmax
xa, ya, xb, yb = xa, ya, xb, yb
row_img_cropped = row_img.crop((xa, ya, xb, yb))
row_img_list.append(row_img_cropped)
cells_img[k_row + "." + str(row_idx)] = row_img_list
row_idx += 1
return cells_img, len(new_cols), len(new_master_row) - 1
def pytess(cell_pil_img):
return " ".join(
pytesseract.image_to_data(
cell_pil_img,
output_type=Output.DICT,
config="-c tessedit_char_blacklist=œ˜â€œï¬â™Ã©œ¢!|”?«“¥ --psm 6 preserve_interword_spaces",
)["text"]
).strip()
def uniquify(seq, suffs=count(1)):
"""Make all the items unique by adding a suffix (1, 2, etc).
Credit: https://stackoverflow.com/questions/30650474/python-rename-duplicates-in-list-with-progressive-numbers-without-sorting-list
`seq` is mutable sequence of strings.
`suffs` is an optional alternative suffix iterable.
"""
not_unique = [k for k, v in Counter(seq).items() if v > 1]
suff_gens = dict(zip(not_unique, tee(suffs, len(not_unique))))
for idx, s in enumerate(seq):
try:
suffix = str(next(suff_gens[s]))
except KeyError:
continue
else:
seq[idx] += suffix
return seq
def clean_dataframe(df):
"""
Remove irrelevant symbols that appear with tesseractOCR
"""
# df.columns = [col.replace('|', '') for col in df.columns]
for col in df.columns:
df[col] = df[col].str.replace("'", "", regex=True)
df[col] = df[col].str.replace('"', "", regex=True)
df[col] = df[col].str.replace("]", "", regex=True)
df[col] = df[col].str.replace("[", "", regex=True)
df[col] = df[col].str.replace("{", "", regex=True)
df[col] = df[col].str.replace("}", "", regex=True)
df[col] = df[col].str.replace("|", "", regex=True)
return df
def create_dataframe(cells_pytess_result: list, max_cols: int, max_rows: int, csv_path):
"""Create dataframe using list of cell values of the table, also checks for valid header of dataframe
Args:
cells_pytess_result: list of strings, each element representing a cell in a table
max_cols, max_rows: number of columns and rows
Returns:
dataframe : final dataframe after all pre-processing
"""
headers = cells_pytess_result[:max_cols]
new_headers = uniquify(headers, (f" {x!s}" for x in string.ascii_lowercase))
counter = 0
cells_list = cells_pytess_result[max_cols:]
df = pd.DataFrame("", index=range(0, max_rows), columns=new_headers)
cell_idx = 0
for nrows in range(max_rows):
for ncols in range(max_cols):
df.iat[nrows, ncols] = str(cells_list[cell_idx])
cell_idx += 1
## To check if there are duplicate headers if result of uniquify+col == col
## This check removes headers when all headers are empty or if median of header word count is less than 6
for x, col in zip(string.ascii_lowercase, new_headers):
if f" {x!s}" == col:
counter += 1
header_char_count = [len(col) for col in new_headers]
# if (counter == len(new_headers)) or (statistics.median(header_char_count) < 6):
# st.write('woooot')
# df.columns = uniquify(df.iloc[0], (f' {x!s}' for x in string.ascii_lowercase))
# df = df.iloc[1:,:]
df = clean_dataframe(df)
# df.to_csv(csv_path)
return df
def postprocess_dataframes(result_tables):
"""
Normalize column names
"""
# df.columns = [col.replace('|', '') for col in df.columns]
res = {}
for idx, table_df in enumerate(result_tables):
result_df = pd.DataFrame()
print("--1")
print(table_df)
print("--2")
print(table_df.to_json(orient="records"))
for col in table_df.columns:
if col.lower().startswith("item"):
result_df["name"] = table_df[col].copy()
if (
col.lower().startswith("total")
or col.lower().startswith("amount")
or col.lower().startswith("cost")
):
result_df["amount"] = table_df[col].copy()
if len(result_df.columns) == 0:
result_df["name"] = table_df.iloc[:, 0].copy()
result_df["amount"] = table_df.iloc[:, 1].copy()
print("--3")
print(result_df.columns)
result_df["cost_code"] = ""
# res["Table" + str(idx)] = result_df.to_json(orient="records")
res=table_df.to_json(orient="records")
return res
def process_image(image):
# if pdf:
# path_to_pdf = pdf.name
# # convert PDF to PIL images (one image by page)
# first_page=True # we want here only the first page as image
# if first_page: last_page = 1
# else: last_page = None
# imgs = pdf2image.convert_from_path(path_to_pdf, last_page=last_page)
# image = imgs[0]
TD_THRESHOLD = 0.7
TSR_THRESHOLD = 0.8
padd_top = 100
padd_left = 100
padd_bottom = 100
padd_right = 20
delta_xmin = 0
delta_ymin = 0
delta_xmax = 0
delta_ymax = 0
expand_rowcol_bbox_top = 0
expand_rowcol_bbox_bottom = 0
image = image.convert("RGB")
model, probas, bboxes_scaled = table_detector(image, THRESHOLD_PROBA=TD_THRESHOLD)
# plot_results_detection(model, image, probas, bboxes_scaled, delta_xmin, delta_ymin, delta_xmax, delta_ymax)
cropped_img_list = crop_tables(
image, probas, bboxes_scaled, delta_xmin, delta_ymin, delta_xmax, delta_ymax
)
result = []
for idx, unpadded_table in enumerate(cropped_img_list):
table = add_padding(
unpadded_table, padd_top, padd_right, padd_bottom, padd_left
)
model, probas, bboxes_scaled = table_struct_recog(
table, THRESHOLD_PROBA=TSR_THRESHOLD
)
rows, cols = generate_structure(
model,
table,
probas,
bboxes_scaled,
expand_rowcol_bbox_top,
expand_rowcol_bbox_bottom,
)
rows, cols = sort_table_featuresv2(rows, cols)
master_row, cols = individual_table_featuresv2(table, rows, cols)
cells_img, max_cols, max_rows = object_to_cellsv2(
master_row,
cols,
expand_rowcol_bbox_top,
expand_rowcol_bbox_bottom,
padd_left,
)
sequential_cell_img_list = []
for k, img_list in cells_img.items():
for img in img_list:
sequential_cell_img_list.append(pytess(img))
csv_path = "/content/sample_data/table_" + str(idx)
df = create_dataframe(sequential_cell_img_list, max_cols, max_rows, csv_path)
result.append(df)
output = postprocess_dataframes(result)
return output
title = ""
description = ""
article = ""
examples = []
iface = gr.Interface(
fn=process_image,
inputs=gr.Image(type="pil"),
outputs="text",
title=title,
description=description,
article=article,
examples=examples,
)
iface.launch(debug=False)