Spaces:
Runtime error
Runtime error
from PIL import Image, ImageEnhance, ImageOps | |
import string | |
from collections import Counter | |
from itertools import tee, count | |
import pytesseract | |
from pytesseract import Output | |
import json | |
import pandas as pd | |
# import matplotlib.pyplot as plt | |
import cv2 | |
import numpy as np | |
from transformers import DetrFeatureExtractor | |
from transformers import TableTransformerForObjectDetection | |
import torch | |
import gradio as gr | |
import pdf2image | |
def plot_results_detection( | |
model, image, prob, bboxes_scaled, delta_xmin, delta_ymin, delta_xmax, delta_ymax | |
): | |
plt.imshow(image) | |
ax = plt.gca() | |
for p, (xmin, ymin, xmax, ymax) in zip(prob, bboxes_scaled.tolist()): | |
cl = p.argmax() | |
xmin, ymin, xmax, ymax = ( | |
xmin - delta_xmin, | |
ymin - delta_ymin, | |
xmax + delta_xmax, | |
ymax + delta_ymax, | |
) | |
ax.add_patch( | |
plt.Rectangle( | |
(xmin, ymin), | |
xmax - xmin, | |
ymax - ymin, | |
fill=False, | |
color="red", | |
linewidth=3, | |
) | |
) | |
text = f"{model.config.id2label[cl.item()]}: {p[cl]:0.2f}" | |
ax.text( | |
xmin - 20, | |
ymin - 50, | |
text, | |
fontsize=10, | |
bbox=dict(facecolor="yellow", alpha=0.5), | |
) | |
plt.axis("off") | |
def crop_tables(pil_img, prob, boxes, delta_xmin, delta_ymin, delta_xmax, delta_ymax): | |
""" | |
crop_tables and plot_results_detection must have same co-ord shifts because 1 only plots the other one updates co-ordinates | |
""" | |
cropped_img_list = [] | |
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()): | |
xmin, ymin, xmax, ymax = ( | |
xmin - delta_xmin, | |
ymin - delta_ymin, | |
xmax + delta_xmax, | |
ymax + delta_ymax, | |
) | |
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax)) | |
cropped_img_list.append(cropped_img) | |
return cropped_img_list | |
def add_padding(pil_img, top, right, bottom, left, color=(255, 255, 255)): | |
""" | |
Image padding as part of TSR pre-processing to prevent missing table edges | |
""" | |
width, height = pil_img.size | |
new_width = width + right + left | |
new_height = height + top + bottom | |
result = Image.new(pil_img.mode, (new_width, new_height), color) | |
result.paste(pil_img, (left, top)) | |
return result | |
def table_detector(image, THRESHOLD_PROBA): | |
""" | |
Table detection using DEtect-object TRansformer pre-trained on 1 million tables | |
""" | |
feature_extractor = DetrFeatureExtractor(do_resize=True, size=800, max_size=800) | |
encoding = feature_extractor(image, return_tensors="pt") | |
model = TableTransformerForObjectDetection.from_pretrained( | |
"microsoft/table-transformer-detection" | |
) | |
with torch.no_grad(): | |
outputs = model(**encoding) | |
probas = outputs.logits.softmax(-1)[0, :, :-1] | |
keep = probas.max(-1).values > THRESHOLD_PROBA | |
target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0) | |
postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes) | |
bboxes_scaled = postprocessed_outputs[0]["boxes"][keep] | |
return (model, probas[keep], bboxes_scaled) | |
def table_struct_recog(image, THRESHOLD_PROBA): | |
""" | |
Table structure recognition using DEtect-object TRansformer pre-trained on 1 million tables | |
""" | |
feature_extractor = DetrFeatureExtractor(do_resize=True, size=1000, max_size=1000) | |
encoding = feature_extractor(image, return_tensors="pt") | |
model = TableTransformerForObjectDetection.from_pretrained( | |
"microsoft/table-transformer-structure-recognition" | |
) | |
with torch.no_grad(): | |
outputs = model(**encoding) | |
probas = outputs.logits.softmax(-1)[0, :, :-1] | |
keep = probas.max(-1).values > THRESHOLD_PROBA | |
target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0) | |
postprocessed_outputs = feature_extractor.post_process(outputs, target_sizes) | |
bboxes_scaled = postprocessed_outputs[0]["boxes"][keep] | |
return (model, probas[keep], bboxes_scaled) | |
def generate_structure( | |
model, pil_img, prob, boxes, expand_rowcol_bbox_top, expand_rowcol_bbox_bottom | |
): | |
colors = ["red", "blue", "green", "yellow", "orange", "violet"] | |
""" | |
Co-ordinates are adjusted here by 3 'pixels' | |
To plot table pillow image and the TSR bounding boxes on the table | |
""" | |
# plt.figure(figsize=(32,20)) | |
# plt.imshow(pil_img) | |
# ax = plt.gca() | |
rows = {} | |
cols = {} | |
idx = 0 | |
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()): | |
xmin, ymin, xmax, ymax = xmin, ymin, xmax, ymax | |
cl = p.argmax() | |
class_text = model.config.id2label[cl.item()] | |
text = f"{class_text}: {p[cl]:0.2f}" | |
# or (class_text == 'table column') | |
# if (class_text == 'table row') or (class_text =='table projected row header') or (class_text == 'table column'): | |
# ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin,fill=False, color=colors[0], linewidth=2)) | |
# ax.text(xmin-10, ymin-10, text, fontsize=5, bbox=dict(facecolor='yellow', alpha=0.5)) | |
if class_text == "table row": | |
rows["table row." + str(idx)] = ( | |
xmin, | |
ymin - expand_rowcol_bbox_top, | |
xmax, | |
ymax + expand_rowcol_bbox_bottom, | |
) | |
if class_text == "table column": | |
cols["table column." + str(idx)] = ( | |
xmin, | |
ymin - expand_rowcol_bbox_top, | |
xmax, | |
ymax + expand_rowcol_bbox_bottom, | |
) | |
idx += 1 | |
# plt.axis('on') | |
return rows, cols | |
def sort_table_featuresv2(rows: dict, cols: dict): | |
# Sometimes the header and first row overlap, and we need the header bbox not to have first row's bbox inside the headers bbox | |
rows_ = { | |
table_feature: (xmin, ymin, xmax, ymax) | |
for table_feature, (xmin, ymin, xmax, ymax) in sorted( | |
rows.items(), key=lambda tup: tup[1][1] | |
) | |
} | |
cols_ = { | |
table_feature: (xmin, ymin, xmax, ymax) | |
for table_feature, (xmin, ymin, xmax, ymax) in sorted( | |
cols.items(), key=lambda tup: tup[1][0] | |
) | |
} | |
return rows_, cols_ | |
def individual_table_featuresv2(pil_img, rows: dict, cols: dict): | |
for k, v in rows.items(): | |
xmin, ymin, xmax, ymax = v | |
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax)) | |
rows[k] = xmin, ymin, xmax, ymax, cropped_img | |
for k, v in cols.items(): | |
xmin, ymin, xmax, ymax = v | |
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax)) | |
cols[k] = xmin, ymin, xmax, ymax, cropped_img | |
return rows, cols | |
def object_to_cellsv2( | |
master_row: dict, | |
cols: dict, | |
expand_rowcol_bbox_top, | |
expand_rowcol_bbox_bottom, | |
padd_left, | |
): | |
"""Removes redundant bbox for rows&columns and divides each row into cells from columns | |
Args: | |
Returns: | |
""" | |
cells_img = {} | |
header_idx = 0 | |
row_idx = 0 | |
previous_xmax_col = 0 | |
new_cols = {} | |
new_master_row = {} | |
previous_ymin_row = 0 | |
new_cols = cols | |
new_master_row = master_row | |
## Below 2 for loops remove redundant bounding boxes ### | |
# for k_col, v_col in cols.items(): | |
# xmin_col, _, xmax_col, _, col_img = v_col | |
# if (np.isclose(previous_xmax_col, xmax_col, atol=5)) or (xmin_col >= xmax_col): | |
# print('Found a column with double bbox') | |
# continue | |
# previous_xmax_col = xmax_col | |
# new_cols[k_col] = v_col | |
# for k_row, v_row in master_row.items(): | |
# _, ymin_row, _, ymax_row, row_img = v_row | |
# if (np.isclose(previous_ymin_row, ymin_row, atol=5)) or (ymin_row >= ymax_row): | |
# print('Found a row with double bbox') | |
# continue | |
# previous_ymin_row = ymin_row | |
# new_master_row[k_row] = v_row | |
###################################################### | |
for k_row, v_row in new_master_row.items(): | |
_, _, _, _, row_img = v_row | |
xmax, ymax = row_img.size | |
xa, ya, xb, yb = 0, 0, 0, ymax | |
row_img_list = [] | |
# plt.imshow(row_img) | |
# st.pyplot() | |
for idx, kv in enumerate(new_cols.items()): | |
k_col, v_col = kv | |
xmin_col, _, xmax_col, _, col_img = v_col | |
xmin_col, xmax_col = xmin_col - padd_left - 10, xmax_col - padd_left | |
# plt.imshow(col_img) | |
# st.pyplot() | |
# xa + 3 : to remove borders on the left side of the cropped cell | |
# yb = 3: to remove row information from the above row of the cropped cell | |
# xb - 3: to remove borders on the right side of the cropped cell | |
xa = xmin_col | |
xb = xmax_col | |
if idx == 0: | |
xa = 0 | |
if idx == len(new_cols) - 1: | |
xb = xmax | |
xa, ya, xb, yb = xa, ya, xb, yb | |
row_img_cropped = row_img.crop((xa, ya, xb, yb)) | |
row_img_list.append(row_img_cropped) | |
cells_img[k_row + "." + str(row_idx)] = row_img_list | |
row_idx += 1 | |
return cells_img, len(new_cols), len(new_master_row) - 1 | |
def pytess(cell_pil_img): | |
return " ".join( | |
pytesseract.image_to_data( | |
cell_pil_img, | |
output_type=Output.DICT, | |
config="-c tessedit_char_blacklist=œ˜â€œï¬â™Ã©œ¢!|”?«“¥ --psm 6 preserve_interword_spaces", | |
)["text"] | |
).strip() | |
def uniquify(seq, suffs=count(1)): | |
"""Make all the items unique by adding a suffix (1, 2, etc). | |
Credit: https://stackoverflow.com/questions/30650474/python-rename-duplicates-in-list-with-progressive-numbers-without-sorting-list | |
`seq` is mutable sequence of strings. | |
`suffs` is an optional alternative suffix iterable. | |
""" | |
not_unique = [k for k, v in Counter(seq).items() if v > 1] | |
suff_gens = dict(zip(not_unique, tee(suffs, len(not_unique)))) | |
for idx, s in enumerate(seq): | |
try: | |
suffix = str(next(suff_gens[s])) | |
except KeyError: | |
continue | |
else: | |
seq[idx] += suffix | |
return seq | |
def clean_dataframe(df): | |
""" | |
Remove irrelevant symbols that appear with tesseractOCR | |
""" | |
# df.columns = [col.replace('|', '') for col in df.columns] | |
for col in df.columns: | |
df[col] = df[col].str.replace("'", "", regex=True) | |
df[col] = df[col].str.replace('"', "", regex=True) | |
df[col] = df[col].str.replace("]", "", regex=True) | |
df[col] = df[col].str.replace("[", "", regex=True) | |
df[col] = df[col].str.replace("{", "", regex=True) | |
df[col] = df[col].str.replace("}", "", regex=True) | |
df[col] = df[col].str.replace("|", "", regex=True) | |
return df | |
def create_dataframe(cells_pytess_result: list, max_cols: int, max_rows: int, csv_path): | |
"""Create dataframe using list of cell values of the table, also checks for valid header of dataframe | |
Args: | |
cells_pytess_result: list of strings, each element representing a cell in a table | |
max_cols, max_rows: number of columns and rows | |
Returns: | |
dataframe : final dataframe after all pre-processing | |
""" | |
headers = cells_pytess_result[:max_cols] | |
new_headers = uniquify(headers, (f" {x!s}" for x in string.ascii_lowercase)) | |
counter = 0 | |
cells_list = cells_pytess_result[max_cols:] | |
df = pd.DataFrame("", index=range(0, max_rows), columns=new_headers) | |
cell_idx = 0 | |
for nrows in range(max_rows): | |
for ncols in range(max_cols): | |
df.iat[nrows, ncols] = str(cells_list[cell_idx]) | |
cell_idx += 1 | |
## To check if there are duplicate headers if result of uniquify+col == col | |
## This check removes headers when all headers are empty or if median of header word count is less than 6 | |
for x, col in zip(string.ascii_lowercase, new_headers): | |
if f" {x!s}" == col: | |
counter += 1 | |
header_char_count = [len(col) for col in new_headers] | |
# if (counter == len(new_headers)) or (statistics.median(header_char_count) < 6): | |
# st.write('woooot') | |
# df.columns = uniquify(df.iloc[0], (f' {x!s}' for x in string.ascii_lowercase)) | |
# df = df.iloc[1:,:] | |
df = clean_dataframe(df) | |
# df.to_csv(csv_path) | |
return df | |
def postprocess_dataframes(result_tables): | |
""" | |
Normalize column names | |
""" | |
# df.columns = [col.replace('|', '') for col in df.columns] | |
res = {} | |
for idx, table_df in enumerate(result_tables): | |
result_df = pd.DataFrame() | |
print("--1") | |
print(table_df) | |
print("--2") | |
print(table_df.to_json(orient="records")) | |
for col in table_df.columns: | |
if col.lower().startswith("item"): | |
result_df["name"] = table_df[col].copy() | |
if ( | |
col.lower().startswith("total") | |
or col.lower().startswith("amount") | |
or col.lower().startswith("cost") | |
): | |
result_df["amount"] = table_df[col].copy() | |
if len(result_df.columns) == 0: | |
result_df["name"] = table_df.iloc[:, 0].copy() | |
result_df["amount"] = table_df.iloc[:, 1].copy() | |
print("--3") | |
print(result_df.columns) | |
result_df["cost_code"] = "" | |
# res["Table" + str(idx)] = result_df.to_json(orient="records") | |
res=table_df.to_json(orient="records") | |
return res | |
def process_image(image): | |
# if pdf: | |
# path_to_pdf = pdf.name | |
# # convert PDF to PIL images (one image by page) | |
# first_page=True # we want here only the first page as image | |
# if first_page: last_page = 1 | |
# else: last_page = None | |
# imgs = pdf2image.convert_from_path(path_to_pdf, last_page=last_page) | |
# image = imgs[0] | |
TD_THRESHOLD = 0.7 | |
TSR_THRESHOLD = 0.8 | |
padd_top = 100 | |
padd_left = 100 | |
padd_bottom = 100 | |
padd_right = 20 | |
delta_xmin = 0 | |
delta_ymin = 0 | |
delta_xmax = 0 | |
delta_ymax = 0 | |
expand_rowcol_bbox_top = 0 | |
expand_rowcol_bbox_bottom = 0 | |
image = image.convert("RGB") | |
model, probas, bboxes_scaled = table_detector(image, THRESHOLD_PROBA=TD_THRESHOLD) | |
# plot_results_detection(model, image, probas, bboxes_scaled, delta_xmin, delta_ymin, delta_xmax, delta_ymax) | |
cropped_img_list = crop_tables( | |
image, probas, bboxes_scaled, delta_xmin, delta_ymin, delta_xmax, delta_ymax | |
) | |
result = [] | |
for idx, unpadded_table in enumerate(cropped_img_list): | |
table = add_padding( | |
unpadded_table, padd_top, padd_right, padd_bottom, padd_left | |
) | |
model, probas, bboxes_scaled = table_struct_recog( | |
table, THRESHOLD_PROBA=TSR_THRESHOLD | |
) | |
rows, cols = generate_structure( | |
model, | |
table, | |
probas, | |
bboxes_scaled, | |
expand_rowcol_bbox_top, | |
expand_rowcol_bbox_bottom, | |
) | |
rows, cols = sort_table_featuresv2(rows, cols) | |
master_row, cols = individual_table_featuresv2(table, rows, cols) | |
cells_img, max_cols, max_rows = object_to_cellsv2( | |
master_row, | |
cols, | |
expand_rowcol_bbox_top, | |
expand_rowcol_bbox_bottom, | |
padd_left, | |
) | |
sequential_cell_img_list = [] | |
for k, img_list in cells_img.items(): | |
for img in img_list: | |
sequential_cell_img_list.append(pytess(img)) | |
csv_path = "/content/sample_data/table_" + str(idx) | |
df = create_dataframe(sequential_cell_img_list, max_cols, max_rows, csv_path) | |
result.append(df) | |
output = postprocess_dataframes(result) | |
return output | |
title = "" | |
description = "" | |
article = "" | |
examples = [] | |
iface = gr.Interface( | |
fn=process_image, | |
inputs=gr.Image(type="pil"), | |
outputs="text", | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
) | |
iface.launch(debug=False) |