File size: 1,186 Bytes
44f92d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import gradio as gr
from transformers import PreTrainedTokenizerFast, BartForConditionalGeneration
# from transformers import๋ก ์์ํ๋ import ๋ฌธ์ ๋ณด๋ฉด
# ๋ง์ ๊ฒฝ์ฐ AutoTokenizer, AutoModel
# tokenizer = AutoTokenizer.from_pretrained("model ์ด๋ฆ ์ด์ฉ๊ณ ์ ์ฉ๊ณ ")
# PreTrainedTokenizerFast : https://huggingface.co./docs/transformers/main_classes/tokenizer
# BART๋ encoder-decoder ๋ชจ๋ธ์ ์์
model_name = "ainize/kobart-news"
tokenizer = PreTrainedTokenizerFast.from_pretrained(model_name)
model = BartForConditionalGeneration.from_pretrained(model_name)
# ์๋ฌธ์ ๋ฐ์์ ์์ฝ๋ฌธ์ ๋ฐํ
def summ(txt):
input_ids = tokenizer.encode(input_text, return_tensors="pt")
summary_text_ids = model.generate(
input_ids=input_ids,
bos_token_id=model.config.bos_token_id,
eos_token_id=model.config.eos_token_id,
length_penalty=2.0,
max_length=142,
min_length=56,
num_beams=4)
return tokenizer.decode(summary_text_ids[0], skip_special_tokens=True)
interface = gr.Interface(summ,
[gr.Textbox(label="original text")],
[gr.Textbox(label="summary")])
interface.launch(share=True) |