final_project / app.py
khadija3818's picture
Update app.py
0d9889d
raw
history blame
5.82 kB
from typing import Dict, Any
import asyncio
import os
# Set your OpenAI API key
os.environ["OPENAI_API_KEY"] = "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"
# Create a new event loop
loop = asyncio.new_event_loop()
# Set the event loop as the current event loop
asyncio.set_event_loop(loop)
from llama_index import (
VectorStoreIndex,
ServiceContext,
download_loader,
)
from llama_index.llama_pack.base import BaseLlamaPack
from llama_index.llms import OpenAI
class StreamlitChatPack(BaseLlamaPack):
"""Streamlit chatbot pack."""
def __init__(
self,
wikipedia_page: str = "Snowflake Inc.",
run_from_main: bool = False,
**kwargs: Any,
) -> None:
"""Init params."""
if not run_from_main:
raise ValueError(
"Please run this llama-pack directly with "
"streamlit run [download_dir]/streamlit_chatbot/base.py"
)
self.wikipedia_page = wikipedia_page
def get_modules(self) -> Dict[str, Any]:
"""Get modules."""
return {}
def run(self, *args: Any, **kwargs: Any) -> Any:
"""Run the pipeline."""
import streamlit as st
from streamlit_pills import pills
st.set_page_config(
page_title=f"Chat with {self.wikipedia_page}'s Wikipedia page, powered by LlamaIndex",
page_icon="🦙",
layout="centered",
initial_sidebar_state="auto",
menu_items=None,
)
if "messages" not in st.session_state: # Initialize the chat messages history
st.session_state["messages"] = [
{"role": "assistant", "content": "Ask me a question about Snowflake!"}
]
st.title(
f"Chat with {self.wikipedia_page}'s Wikipedia page, powered by LlamaIndex 💬🦙"
)
st.info(
"This example is powered by the **[Llama Hub Wikipedia Loader](https://llamahub.ai/l/wikipedia)**. Use any of [Llama Hub's many loaders](https://llamahub.ai/) to retrieve and chat with your data via a Streamlit app.",
icon="ℹ️",
)
def add_to_message_history(role, content):
message = {"role": role, "content": str(content)}
st.session_state["messages"].append(
message
) # Add response to message history
@st.cache_resource
def load_index_data():
WikipediaReader = download_loader(
"WikipediaReader", custom_path="local_dir"
)
loader = WikipediaReader()
docs = loader.load_data(pages=[self.wikipedia_page])
service_context = ServiceContext.from_defaults(
llm=OpenAI(model="gpt-3.5-turbo", temperature=0.5)
)
index = VectorStoreIndex.from_documents(
docs, service_context=service_context
)
return index
index = load_index_data()
selected = pills(
"Choose a question to get started or write your own below.",
[
"What is Snowflake?",
"What company did Snowflake announce they would acquire in October 2023?",
"What company did Snowflake acquire in March 2022?",
"When did Snowflake IPO?",
],
clearable=True,
index=None,
)
if "chat_engine" not in st.session_state: # Initialize the query engine
st.session_state["chat_engine"] = index.as_chat_engine(
chat_mode="context", verbose=True
)
for message in st.session_state["messages"]: # Display the prior chat messages
with st.chat_message(message["role"]):
st.write(message["content"])
# To avoid duplicated display of answered pill questions each rerun
if selected and selected not in st.session_state.get(
"displayed_pill_questions", set()
):
st.session_state.setdefault("displayed_pill_questions", set()).add(selected)
with st.chat_message("user"):
st.write(selected)
with st.chat_message("assistant"):
response = st.session_state["chat_engine"].stream_chat(selected)
response_str = ""
response_container = st.empty()
for token in response.response_gen:
response_str += token
response_container.write(response_str)
add_to_message_history("user", selected)
add_to_message_history("assistant", response)
if prompt := st.chat_input(
"Your question"
): # Prompt for user input and save to chat history
add_to_message_history("user", prompt)
# Display the new question immediately after it is entered
with st.chat_message("user"):
st.write(prompt)
# If last message is not from assistant, generate a new response
# if st.session_state["messages"][-1]["role"] != "assistant":
with st.chat_message("assistant"):
response = st.session_state["chat_engine"].stream_chat(prompt)
response_str = ""
response_container = st.empty()
for token in response.response_gen:
response_str += token
response_container.write(response_str)
# st.write(response.response)
add_to_message_history("assistant", response.response)
# Save the state of the generator
st.session_state["response_gen"] = response.response_gen
if __name__ == "__main__":
StreamlitChatPack(run_from_main=True).run()