# -------------------------------------------------------- # Image as a Foreign Language: BEiT Pretraining for Vision and Vision-Language Tasks (https://arxiv.org/abs/2208.10442) # Github source: https://github.com/microsoft/unilm/tree/master/beit3 # Copyright (c) 2023 Microsoft # Licensed under The MIT License [see LICENSE for details] # --------------------------------------------------------' import math import sys import json from typing import Iterable, Optional import torch import torch.nn as nn import torch.nn.functional as F from timm.utils import ModelEma from timm.utils import accuracy, ModelEma from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy from datasets import get_sentencepiece_model_for_beit3 import utils class TaskHandler(object): def __init__(self) -> None: self.metric_logger = None self.split = None def train_batch(self, model, **kwargs): raise NotImplementedError() def eval_batch(self, model, **kwargs): raise NotImplementedError() def before_eval(self, metric_logger, data_loader, **kwargs): self.metric_logger = metric_logger self.split = data_loader.dataset.split def after_eval(self, **kwargs): raise NotImplementedError() class NLVR2Handler(TaskHandler): def __init__(self) -> None: super().__init__() self.criterion = torch.nn.CrossEntropyLoss() def train_batch(self, model, image, image2, language_tokens, padding_mask, label): logits = model( image_a=image, image_b=image2, text_description=language_tokens, padding_mask=padding_mask) acc = (logits.max(-1)[-1] == label).float().mean() return { "loss": self.criterion(input=logits, target=label), "acc": acc, } def eval_batch(self, model, image, image2, language_tokens, padding_mask, label): logits = model( image_a=image, image_b=image2, text_description=language_tokens, padding_mask=padding_mask) batch_size = language_tokens.shape[0] acc = (logits.max(-1)[-1] == label).float().sum(0) * 100.0 / batch_size self.metric_logger.meters['acc'].update(acc.item(), n=batch_size) def after_eval(self, **kwargs): print('* Acc {acc.global_avg:.3f}'.format(acc=self.metric_logger.acc)) return {k: meter.global_avg for k, meter in self.metric_logger.meters.items()}, "acc" class ImageNetHandler(TaskHandler): def __init__(self, args) -> None: super().__init__() mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None if mixup_active: # smoothing is handled with mixup label transform self.criterion = SoftTargetCrossEntropy() elif args.label_smoothing > 0.: self.criterion = LabelSmoothingCrossEntropy(smoothing=args.label_smoothing) else: self.criterion = torch.nn.CrossEntropyLoss() def train_batch(self, model, image, label): logits = model(image=image) return { "loss": self.criterion(logits, label), } def eval_batch(self, model, image, label): logits = model(image=image) batch_size = image.shape[0] acc1, acc5 = accuracy(logits, label, topk=(1, 5)) self.metric_logger.meters['acc1'].update(acc1.item(), n=batch_size) self.metric_logger.meters['acc5'].update(acc5.item(), n=batch_size) def after_eval(self, **kwargs): print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f}' .format(top1=self.metric_logger.acc1, top5=self.metric_logger.acc5)) return {k: meter.global_avg for k, meter in self.metric_logger.meters.items()}, "acc1" class RetrievalHandler(TaskHandler): def __init__(self) -> None: super().__init__() self.image_feats = [] self.text_feats = [] self.image_ids = [] self.metric_logger = None def train_batch(self, model, image, language_tokens, padding_mask, image_id): loss, vision_cls, language_cls = model( image=image, text_description=language_tokens, padding_mask=padding_mask) return { "loss": loss, } def before_eval(self, metric_logger, **kwargs): self.image_feats.clear() self.text_feats.clear() self.image_ids.clear() self.metric_logger = metric_logger def eval_batch(self, model, image, language_tokens, padding_mask, image_id): vision_cls, _ = model(image=image, only_infer=True) _, language_cls = model( text_description=language_tokens, padding_mask=padding_mask, only_infer=True) self.image_feats.append(vision_cls.clone()) self.text_feats.append(language_cls.clone()) self.image_ids.append(image_id.clone()) def after_eval(self, **kwargs): image_feats = {} for feats, ids in zip(self.image_feats, self.image_ids): for i, _idx in enumerate(ids): idx = _idx.item() if idx not in image_feats: image_feats[idx] = feats[i] tiids = torch.cat(self.image_ids, dim=0) iids = [] sorted_tensors = [] for key in sorted(image_feats.keys()): sorted_tensors.append(image_feats[key].view(1, -1)) iids.append(key) image_cls_feats = torch.cat(sorted_tensors, dim=0) text_cls_feats = torch.cat(self.text_feats, dim=0) scores = image_cls_feats @ text_cls_feats.t() iids = torch.LongTensor(iids).to(scores.device) print("scores: {}".format(scores.size())) print("iids: {}".format(iids.size())) print("tiids: {}".format(tiids.size())) topk10 = scores.topk(10, dim=1) topk5 = scores.topk(5, dim=1) topk1 = scores.topk(1, dim=1) topk10_iids = tiids[topk10.indices] topk5_iids = tiids[topk5.indices] topk1_iids = tiids[topk1.indices] tr_r10 = (iids.unsqueeze(1) == topk10_iids).float().max(dim=1)[0].mean() tr_r5 = (iids.unsqueeze(1) == topk5_iids).float().max(dim=1)[0].mean() tr_r1 = (iids.unsqueeze(1) == topk1_iids).float().max(dim=1)[0].mean() topk10 = scores.topk(10, dim=0) topk5 = scores.topk(5, dim=0) topk1 = scores.topk(1, dim=0) topk10_iids = iids[topk10.indices] topk5_iids = iids[topk5.indices] topk1_iids = iids[topk1.indices] ir_r10 = (tiids.unsqueeze(0) == topk10_iids).float().max(dim=0)[0].mean() ir_r5 = (tiids.unsqueeze(0) == topk5_iids).float().max(dim=0)[0].mean() ir_r1 = (tiids.unsqueeze(0) == topk1_iids).float().max(dim=0)[0].mean() eval_result = { "tr_r10": tr_r10.item() * 100.0, "tr_r5": tr_r5.item() * 100.0, "tr_r1": tr_r1.item() * 100.0, "ir_r10": ir_r10.item() * 100.0, "ir_r5": ir_r5.item() * 100.0, "ir_r1": ir_r1.item() * 100.0, "average_score": 100.0 * (tr_r1 + tr_r5 + tr_r10 + ir_r1 + ir_r5 + ir_r10).item() / 6.0, } print('* Eval result = %s' % json.dumps(eval_result)) return eval_result, "average_score" class VQAHandler(TaskHandler): def __init__(self) -> None: super().__init__() self.predictions = [] self.criterion = nn.BCEWithLogitsLoss(reduction='mean') self.label2ans = None def train_batch(self, model, image, language_tokens, padding_mask, labels): logits = model( image=image, question=language_tokens, padding_mask=padding_mask) return { "loss": self.criterion(input=logits.float(), target=labels.float()) * labels.shape[1], } def before_eval(self, metric_logger, data_loader, **kwargs): self.predictions.clear() self.metric_logger = metric_logger self.label2ans = data_loader.dataset.label2ans def eval_batch(self, model, image, language_tokens, padding_mask, labels=None, qid=None): logits = model( image=image, question=language_tokens, padding_mask=padding_mask) batch_size = language_tokens.shape[0] if labels is not None: scores = utils.VQAScore()(logits, labels) * 100.0 self.metric_logger.meters['score'].update(scores.item(), n=batch_size) else: _, preds = logits.max(-1) for image_id, pred in zip(qid, preds): self.predictions.append({ "question_id": image_id.item(), "answer": self.label2ans[pred.item()], }) def after_eval(self, **kwargs): if len(self.predictions) == 0: print('* Score {score.global_avg:.3f}'.format(score=self.metric_logger.score)) return {k: meter.global_avg for k, meter in self.metric_logger.meters.items()}, "score" else: return self.predictions, "prediction" class CaptioningHandler(TaskHandler): def __init__(self, args) -> None: super().__init__() self.predictions = [] self.criterion = utils.BertCaptioningLoss(args.label_smoothing, args.drop_worst_ratio, args.drop_worst_after) self.tokenizer = get_sentencepiece_model_for_beit3(args) self.num_beams = args.num_beams self.max_len = args.num_max_bpe_tokens self.length_penalty = args.length_penalty self.vocab_size = args.vocab_size def train_batch(self, model, image, language_tokens, masked_tokens, language_masked_pos, padding_mask, image_id, global_step): logits, _ = model( image=image, text_ids=masked_tokens, padding_mask=padding_mask, language_masked_pos=language_masked_pos, image_id=image_id) masked_labels = language_tokens[language_masked_pos.bool()] score = torch.max(logits, -1)[1].data == masked_labels acc = torch.sum(score.float()) / torch.sum(language_masked_pos) return { "loss": self.criterion(logits, masked_labels, global_step), "acc": acc } def before_eval(self, metric_logger, data_loader, **kwargs): self.predictions.clear() self.metric_logger = metric_logger def eval_batch(self, model, image, image_id=None): cur_len = 2 num_keep_best = 1 TOPN_PER_BEAM = 3 batch_size = image.size(0) mask_id = self.tokenizer.mask_token_id cls_id = self.tokenizer.cls_token_id pad_id = self.tokenizer.pad_token_id sep_id = self.tokenizer.sep_token_id eos_token_ids = [sep_id] cls_ids = torch.full( (batch_size, 1), cls_id, dtype=torch.long, device=image.device ) mask_ids = torch.full( (batch_size, 1), mask_id, dtype=torch.long, device=image.device ) cur_input_ids = torch.cat([cls_ids, mask_ids], dim=1) tmp_ids = torch.full( (batch_size, self.max_len-1), mask_id, dtype=torch.long, device=image.device ) decoding_results = torch.cat([cls_ids, tmp_ids], dim=1) # Expand input to num beams cur_input_ids = cur_input_ids.unsqueeze(1).expand(batch_size, self.num_beams, cur_len) cur_input_ids = cur_input_ids.contiguous().view(batch_size * self.num_beams, cur_len) # (batch_size * num_beams, cur_len) decoding_results = decoding_results.unsqueeze(1).expand(batch_size, self.num_beams, self.max_len) decoding_results = decoding_results.contiguous().view(batch_size * self.num_beams, self.max_len) # (batch_size * num_beams, cur_len) image = image.unsqueeze(1).expand(batch_size, self.num_beams, image.size(-3), image.size(-2), image.size(-1)) image = image.contiguous().view(batch_size * self.num_beams, image.size(-3), image.size(-2), image.size(-1)) generated_hyps = [ utils.BeamHypotheses( num_keep_best, self.max_len, length_penalty=self.length_penalty, early_stopping=False ) for _ in range(batch_size) ] # scores for each sentence in the beam beam_scores = torch.zeros((batch_size, self.num_beams), dtype=torch.float, device=cur_input_ids.device) beam_scores[:, 1:] = -1e9 beam_scores = beam_scores.view(-1) # shape (batch_size * num_beams,) # done sentences done = [False for _ in range(batch_size)] incremental_state = {} while cur_len <= self.max_len: next_token_idx = 1 padding_masks = torch.full( cur_input_ids.shape, 0, dtype=torch.long, device=image.device ) input_image = image if cur_len != 2: input_image = None outputs, incremental_state_next = model( image=input_image, text_ids=cur_input_ids, language_masked_pos=None, padding_mask=padding_masks, text_len=cur_len, incremental_state=incremental_state) incremental_state = incremental_state_next # assert outputs.shape[1] == token_len scores = outputs[:, next_token_idx, :] # (batch_size * num_beams, vocab_size) scores = F.log_softmax(scores, dim=-1) # (batch_size * num_beams, vocab_size) assert scores.size() == (batch_size * self.num_beams, self.vocab_size) # Add the log prob of the new beams to the log prob of the beginning of the sequence (sum of logs == log of the product) _scores = scores + beam_scores[:, None].expand_as(scores) # (batch_size * num_beams, vocab_size) # re-organize to group the beam together (we are keeping top hypothesis accross beams) _scores = _scores.view(batch_size, self.num_beams * self.vocab_size) # (batch_size, num_beams * vocab_size) next_scores, next_words = torch.topk(_scores, TOPN_PER_BEAM * self.num_beams, dim=1, largest=True, sorted=True) assert next_scores.size() == next_words.size() == (batch_size, TOPN_PER_BEAM * self.num_beams) # next batch beam content # list of (batch_size * num_beams) tuple(next hypothesis score, next word, current position in the batch) next_batch_beam = [] # for each sentence for batch_ex in range(batch_size): # if we are done with this sentence done[batch_ex] = done[batch_ex] or generated_hyps[batch_ex].is_done(next_scores[batch_ex].max().item()) if done[batch_ex]: next_batch_beam.extend([(0, pad_id, 0)] * self.num_beams) # pad the batch continue # next sentence beam content next_sent_beam = [] for idx, score in zip(next_words[batch_ex], next_scores[batch_ex]): # get beam and word IDs beam_id = idx // self.vocab_size word_id = idx % self.vocab_size # end of sentence, or next word # if word_id.item() in eos_token_ids or cur_len + 1 == max_len: if (word_id.item() in eos_token_ids and cur_len + 1 <= self.max_len) or (cur_len + 1 == self.max_len): generated_hyps[batch_ex].add( decoding_results[batch_ex * self.num_beams + beam_id, :cur_len].clone(), score.item() ) else: next_sent_beam.append((score, word_id, batch_ex * self.num_beams + beam_id)) # the beam for next step is full if len(next_sent_beam) == self.num_beams: break # update next beam content if cur_len + 1 == self.max_len: assert len(next_sent_beam) == 0 else: assert len(next_sent_beam) == self.num_beams if len(next_sent_beam) == 0: next_sent_beam = [(0, pad_id, 0)] * self.num_beams # pad the batch next_batch_beam.extend(next_sent_beam) assert len(next_batch_beam) == self.num_beams * (batch_ex + 1) # sanity check / prepare next batch assert len(next_batch_beam) == batch_size * self.num_beams beam_scores = beam_scores.new([x[0] for x in next_batch_beam]) beam_words = cur_input_ids.new([x[1] for x in next_batch_beam]) beam_idx = cur_input_ids.new([x[2] for x in next_batch_beam]) # re-order batch cur_input_ids = cur_input_ids[beam_idx, :] decoding_results = decoding_results[beam_idx, :] for module in incremental_state: for key in incremental_state[module]: result = incremental_state[module][key].index_select(0, beam_idx) incremental_state[module][key] = result[:,:,:-1,:] next_ids = torch.full( (batch_size * self.num_beams, 1), mask_id, dtype=torch.long, device=image.device ) cur_input_ids = torch.cat([beam_words.unsqueeze(1), next_ids], dim=1) decoding_results[:, cur_len-1] = beam_words # update current length cur_len = cur_len + 1 # stop when we are done with each sentence if all(done): break # select the best hypotheses tgt_len = torch.ones(batch_size, num_keep_best, dtype=torch.long) logprobs = torch.zeros(batch_size, num_keep_best, dtype=torch.float).fill_(-1e5).to(cur_input_ids.device) all_best = [] for i, hypotheses in enumerate(generated_hyps): best = [] hyp_scores = torch.tensor([x[0] for x in hypotheses.hyp]) _, best_indices = torch.topk(hyp_scores, min(num_keep_best, len(hyp_scores)), largest=True) for best_idx, hyp_idx in enumerate(best_indices): conf, best_hyp = hypotheses.hyp[hyp_idx] best.append(best_hyp) logprobs[i, best_idx] = conf tgt_len[i, best_idx] = len(best_hyp) + 1 # +1 for the symbol all_best.append(best) # generate target batch, pad to the same length decoded = cur_input_ids.new(batch_size, num_keep_best, self.max_len).fill_(pad_id) for batch_idx, best in enumerate(all_best): for best_idx, hypo in enumerate(best): decoded[batch_idx, best_idx, : tgt_len[batch_idx, best_idx] - 1] = hypo decoded[batch_idx, best_idx, tgt_len[batch_idx, best_idx] - 1] = eos_token_ids[0] captions = self.tokenizer.batch_decode(decoded.squeeze(1), skip_special_tokens=True) for qid, pred in zip(image_id, captions): self.predictions.append({ "image_id": qid.item(), "caption": pred, }) def after_eval(self, **kwargs): return self.predictions, "prediction" def get_handler(args): if args.task == "nlvr2": return NLVR2Handler() elif args.task == "vqav2": return VQAHandler() elif args.task in ("flickr30k", "coco_retrieval"): return RetrievalHandler() elif args.task in ("coco_captioning", "nocaps"): return CaptioningHandler(args) elif args.task in ("imagenet"): return ImageNetHandler(args) else: raise NotImplementedError("Sorry, %s is not support." % args.task) def train_one_epoch( model: torch.nn.Module, data_loader: Iterable, optimizer: torch.optim.Optimizer, device: torch.device, handler: TaskHandler, epoch: int, start_steps: int, lr_schedule_values: list, loss_scaler, max_norm: float = 0, update_freq: int = 1, model_ema: Optional[ModelEma] = None, log_writer: Optional[utils.TensorboardLogger] = None, task = None, mixup_fn=None, ): model.train(True) metric_logger = utils.MetricLogger(delimiter=" ") metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) metric_logger.add_meter('min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}')) header = 'Epoch: [{}]'.format(epoch) print_freq = 10 if loss_scaler is None: model.zero_grad() model.micro_steps = 0 else: optimizer.zero_grad() for data_iter_step, data in enumerate(metric_logger.log_every(data_loader, print_freq, header)): step = data_iter_step // update_freq global_step = start_steps + step # global training iteration # Update LR & WD for the first acc if lr_schedule_values is not None and data_iter_step % update_freq == 0: for i, param_group in enumerate(optimizer.param_groups): if lr_schedule_values is not None: param_group["lr"] = lr_schedule_values[global_step] * param_group["lr_scale"] # put input data into cuda for tensor_key in data.keys(): data[tensor_key] = data[tensor_key].to(device, non_blocking=True) # print("input %s = %s" % (tensor_key, data[tensor_key])) if loss_scaler is None and tensor_key.startswith("image"): data[tensor_key] = data[tensor_key].half() # mixup for imagenet finetuning if mixup_fn is not None: data["image"], data["label"] = mixup_fn(data["image"], data["label"]) if task in ["coco_captioning", "nocaps"]: data["global_step"] = global_step if loss_scaler is None: results = handler.train_batch(model, **data) else: with torch.cuda.amp.autocast(): results = handler.train_batch(model, **data) loss = results.pop("loss") loss_value = loss.item() if not math.isfinite(loss_value): print("Loss is {}, stopping training".format(loss_value)) sys.exit(1) if loss_scaler is None: loss /= update_freq model.backward(loss) model.step() if (data_iter_step + 1) % update_freq == 0: # model.zero_grad() # Deepspeed will call step() & model.zero_grad() automatic if model_ema is not None: model_ema.update(model) grad_norm = None loss_scale_value = utils.get_loss_scale_for_deepspeed(model) else: # this attribute is added by timm on one optimizer (adahessian) is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order loss /= update_freq grad_norm = loss_scaler(loss, optimizer, clip_grad=max_norm, parameters=model.parameters(), create_graph=is_second_order, update_grad=(data_iter_step + 1) % update_freq == 0) if (data_iter_step + 1) % update_freq == 0: optimizer.zero_grad() if model_ema is not None: model_ema.update(model) loss_scale_value = loss_scaler.state_dict()["scale"] torch.cuda.synchronize() metric_logger.update(loss=loss_value) metric_logger.update(loss_scale=loss_scale_value) min_lr = 10. max_lr = 0. for group in optimizer.param_groups: min_lr = min(min_lr, group["lr"]) max_lr = max(max_lr, group["lr"]) metric_logger.update(lr=max_lr) metric_logger.update(min_lr=min_lr) weight_decay_value = None for group in optimizer.param_groups: if group["weight_decay"] > 0: weight_decay_value = group["weight_decay"] metric_logger.update(weight_decay=weight_decay_value) metric_logger.update(grad_norm=grad_norm) if log_writer is not None: kwargs = { "loss": loss_value, } for key in results: kwargs[key] = results[key] log_writer.update(head="train", **kwargs) kwargs = { "loss_scale": loss_scale_value, "lr": max_lr, "min_lr": min_lr, "weight_decay": weight_decay_value, "grad_norm": grad_norm, } log_writer.update(head="opt", **kwargs) log_writer.set_step() # gather the stats from all processes metric_logger.synchronize_between_processes() print("Averaged stats:", metric_logger) return {k: meter.global_avg for k, meter in metric_logger.meters.items()} @torch.no_grad() def evaluate(data_loader, model, device, handler): metric_logger = utils.MetricLogger(delimiter=" ") header = 'Test:' # switch to evaluation mode model.eval() handler.before_eval(metric_logger=metric_logger, data_loader=data_loader) for data in metric_logger.log_every(data_loader, 10, header): for tensor_key in data.keys(): data[tensor_key] = data[tensor_key].to(device, non_blocking=True) with torch.cuda.amp.autocast(): handler.eval_batch(model=model, **data) # gather the stats from all processes metric_logger.synchronize_between_processes() return handler.after_eval()