evf-sam2 / model /unilm /beit3 /datasets.py
wondervictor's picture
add app
a93afca
# --------------------------------------------------------
# Image as a Foreign Language: BEiT Pretraining for Vision and Vision-Language Tasks (https://arxiv.org/abs/2208.10442)
# Github source: https://github.com/microsoft/unilm/tree/master/beit3
# Copyright (c) 2023 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------'
import os
import json
import random
import torch
import glob
from collections import defaultdict, Counter
from torchvision import transforms
from torchvision.datasets.folder import default_loader
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD
from timm.data.transforms import RandomResizedCropAndInterpolation
from timm.data import create_transform
import utils
from glossary import normalize_word
from randaug import RandomAugment
class BaseDataset(torch.utils.data.Dataset):
def __init__(
self, data_path, split, transform,
tokenizer, num_max_bpe_tokens, task=None,
):
index_files = self.get_index_files(split, task=task)
self.tokenizer = tokenizer
self.num_max_bpe_tokens = num_max_bpe_tokens
self.data_path = data_path
items = []
self.index_files = index_files
offset = 0
for _index_file in index_files:
index_file = os.path.join(data_path, _index_file)
with open(index_file, mode="r", encoding="utf-8") as reader:
for line in reader:
data = json.loads(line)
items.append(data)
print("Load %d image-text pairs from %s. " % (len(items) - offset, index_file))
offset = len(items)
self.items = items
self.bos_token_id = tokenizer.bos_token_id
self.eos_token_id = tokenizer.eos_token_id
self.pad_token_id = tokenizer.pad_token_id
self.loader = default_loader
self.transform = transform
self.split = split
@staticmethod
def get_index_files(split):
raise NotImplementedError()
def _get_image(self, image_path: str):
image_path = os.path.join(self.data_path, image_path)
image = self.loader(image_path)
return self.transform(image)
def _get_text_segment(self, text_segment, max_len=None):
if isinstance(text_segment, str):
tokens = self.tokenizer.tokenize(text_segment)
else:
tokens = text_segment[:]
if len(tokens) == 0:
raise RuntimeError("The text segment should contains at least one tokens!")
if max_len is None:
max_len = self.num_max_bpe_tokens
if len(tokens) > max_len - 2:
tokens = tokens[:max_len - 2]
tokens = [self.bos_token_id] + tokens[:] + [self.eos_token_id]
num_tokens = len(tokens)
padding_mask = [0] * num_tokens + [1] * (max_len - num_tokens)
return tokens + [self.pad_token_id] * (max_len - num_tokens), padding_mask, num_tokens
def _get_image_text_example(self, index: int, data: dict):
item = self.items[index]
img_path = item["image_path"]
img = self._get_image(img_path)
data["image"] = img
text_segment = item["text_segment"]
language_tokens, padding_mask, _ = self._get_text_segment(text_segment)
data["language_tokens"] = language_tokens
data["padding_mask"] = padding_mask
def __getitem__(self, index: int):
data = dict()
self._get_image_text_example(index, data)
return data
def __len__(self) -> int:
return len(self.items)
def __repr__(self) -> str:
head = "Dataset " + self.__class__.__name__
body = '{' + "\n Number of items: %s," % self.__len__()
body += "\n data root = %s," % self.data_path
body += "\n split = %s," % self.split
body += "\n dataset index files = %s" % str(self.index_files)
body += "\n num max bpe tokens = %s" % self.num_max_bpe_tokens
body += "\n transforms = ["
for t in self.transform.transforms:
body += "\n %s" % str(t)
body += "\n ]"
body += "\n}"
return head + body
def _write_data_into_jsonl(items, jsonl_file):
with open(jsonl_file, mode="w", encoding="utf-8") as writer:
for data in items:
writer.write(json.dumps(data, indent=None))
writer.write('\n')
print("Write %s with %d items !" % (jsonl_file, len(items)))
def _make_retrieval_coco_karpathy_dataset_index(
data_path,
tokenizer,
split=("train", "restval"),
split_name="train",
):
coco_karpathy_split_json_file = os.path.join(data_path, "dataset_coco.json")
items = []
image_counter = set()
print("read %s" % coco_karpathy_split_json_file)
with open(coco_karpathy_split_json_file, mode="r", encoding="utf-8") as reader:
data = json.loads(reader.read())
for item in data["images"]:
if item["split"] in split:
image_path = os.path.join(item["filepath"], item["filename"])
for sent in item["sentences"]:
tokens = tokenizer.tokenize(sent["raw"])
token_ids = tokenizer.convert_tokens_to_ids(tokens)
items.append({
"image_path": image_path,
"text_segment": token_ids,
"image_id": len(image_counter),
})
if image_path not in image_counter:
image_counter.add(image_path)
print("Find %d images and %d image-text pairs for karpathy dataset %s split !" % \
(len(image_counter), len(items), split_name))
index_file = os.path.join(data_path, "coco_retrieval.%s.jsonl" % split_name)
_write_data_into_jsonl(items, index_file)
pass
def _make_captioning_coco_karpathy_dataset_index(
data_path,
tokenizer,
split=("train", "restval"),
split_name="train",
):
coco_karpathy_split_json_file = os.path.join(data_path, "dataset_coco.json")
items = []
image_counter = set()
print("read %s" % coco_karpathy_split_json_file)
with open(coco_karpathy_split_json_file, mode="r", encoding="utf-8") as reader:
data = json.loads(reader.read())
for item in data["images"]:
if item["split"] in split:
image_path = os.path.join(item["filepath"], item["filename"])
if item["split"] in ["train", "restval"]:
for sent in item["sentences"]:
tokens = tokenizer.tokenize(sent["raw"])
token_ids = tokenizer.convert_tokens_to_ids(tokens)
items.append({
"image_path": image_path,
"text_segment": token_ids,
"image_id": item["cocoid"],
})
else:
items.append({
"image_path": image_path,
"text_segment": None,
"image_id": item["cocoid"],
})
if image_path not in image_counter:
image_counter.add(image_path)
print("Find %d images and %d image-text pairs for karpathy dataset %s split !" % \
(len(image_counter), len(items), split_name))
index_file = os.path.join(data_path, "coco_captioning.%s.jsonl" % split_name)
_write_data_into_jsonl(items, index_file)
pass
def _make_nocaps_dataset_index(
data_path,
split="val",
):
if split == "val":
json_file = "nocaps_val_4500_captions.json"
elif split == "test":
json_file = "nocaps_test_image_info.json"
nocaps_split_json_file = os.path.join(data_path, json_file)
items = []
image_counter = set()
print("read %s" % nocaps_split_json_file)
with open(nocaps_split_json_file, mode="r", encoding="utf-8") as reader:
data = json.loads(reader.read())
for item in data["images"]:
image_path = os.path.join(split, item["file_name"])
items.append({
"image_path": image_path,
"text_segment": None,
"image_id": item["id"],
})
if image_path not in image_counter:
image_counter.add(image_path)
print("Find %d images and %d image-text pairs for nocaps dataset %s split !" % \
(len(image_counter), len(items), split))
index_file = os.path.join(data_path, "nocaps.%s.jsonl" % split)
_write_data_into_jsonl(items, index_file)
class NLVR2Dataset(BaseDataset):
@staticmethod
def get_index_files(split, task=None):
if split == "train":
return ("nlvr2.train.index.jsonl", )
elif split == "val":
return ("nlvr2.dev.index.jsonl", )
elif split == "test":
return ("nlvr2.test-P.index.jsonl", )
else:
raise RuntimeError("split %s is not found!" % split)
def __getitem__(self, index: int):
data = super().__getitem__(index)
item = self.items[index]
img_path = item["image2_path"]
img = self._get_image(img_path)
data["image2"] = img
data["label"] = self.items[index]["label"]
return data
@staticmethod
def __preprocess_json(preifx, json_file, tokenizer, index_file):
items = []
with open(json_file, mode="r", encoding="utf-8") as reader:
for line in reader:
data = json.loads(line)
path = os.path.join(preifx, str(data["directory"])) if "directory" in data else preifx
path = os.path.join(path, "-".join(data["identifier"].split("-")[:-1]))
tokens = tokenizer.tokenize(data["sentence"])
token_ids = tokenizer.convert_tokens_to_ids(tokens)
items.append({
"image_path": path + "-img0.png",
"image2_path": path + "-img1.png",
"text_segment": token_ids,
"label": 1 if data["label"] == "True" else 0,
"identifier": data["identifier"],
})
_write_data_into_jsonl(items, index_file)
@classmethod
def make_dataset_index(cls, data_path, tokenizer, nlvr_repo_path):
cls.__preprocess_json(
preifx="images/train", json_file=os.path.join(nlvr_repo_path, "nlvr2/data/train.json"),
tokenizer=tokenizer, index_file=os.path.join(data_path, cls.get_index_files("train")[0]),
)
cls.__preprocess_json(
preifx="dev", json_file=os.path.join(nlvr_repo_path, "nlvr2/data/dev.json"),
tokenizer=tokenizer, index_file=os.path.join(data_path, cls.get_index_files("val")[0]),
)
cls.__preprocess_json(
preifx="test1", json_file=os.path.join(nlvr_repo_path, "nlvr2/data/test1.json"),
tokenizer=tokenizer, index_file=os.path.join(data_path, cls.get_index_files("test")[0]),
)
class ImageNetDataset(BaseDataset):
@staticmethod
def get_index_files(split, task=None):
if split == "train":
return ("imagenet.train.index.jsonl", )
elif split == "val":
return ("imagenet.val.index.jsonl", )
elif split == "test":
return ("imagenet.val.index.jsonl", )
else:
raise RuntimeError("split %s is not found!" % split)
def __getitem__(self, index: int):
data = dict()
item = self.items[index]
img_path = item["image_path"]
img = self._get_image(img_path)
data["image"] = img
data["label"] = item["label"]
return data
@staticmethod
def _find_classes(dir):
"""
Finds the class folders in a dataset.
Args:
dir (string): Root directory path.
Returns:
tuple: (classes, class_to_idx) where classes are relative to (dir), and class_to_idx is a dictionary.
Ensures:
No class is a subdirectory of another.
"""
classes = [d.name for d in os.scandir(dir) if d.is_dir()]
classes.sort()
class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)}
return classes, class_to_idx
@staticmethod
def _make_imagenet_index(data_path, index_path, data_path_prefix, class_to_idx, split):
items = []
index_file = os.path.join(index_path, f"imagenet.{split}.index.jsonl")
for target_class in sorted(class_to_idx.keys()):
class_index = class_to_idx[target_class]
target_dir = os.path.join(data_path, target_class)
if not os.path.isdir(target_dir):
continue
for root, _, fnames in sorted(os.walk(target_dir, followlinks=True)):
for fname in sorted(fnames):
path = os.path.join(root, fname)
path = path.replace(data_path_prefix, "")
items.append({
"image_path": path,
"label": class_index,
})
_write_data_into_jsonl(items, index_file)
@classmethod
def make_dataset_index(cls, train_data_path, val_data_path, index_path):
data_path_prefix = train_data_path[:[x[0]==x[1] for x in zip(train_data_path, val_data_path)].index(0)]
classes, class_to_idx = cls._find_classes(train_data_path)
cls._make_imagenet_index(
data_path=train_data_path, index_path=index_path, data_path_prefix=data_path_prefix,
class_to_idx=class_to_idx, split="train",
)
cls._make_imagenet_index(
data_path=val_data_path, index_path=index_path, data_path_prefix=data_path_prefix,
class_to_idx=class_to_idx, split="val",
)
class VQAv2Dataset(BaseDataset):
def __init__(self, data_path, **kwargs):
super().__init__(data_path=data_path, **kwargs)
ans2label_file = os.path.join(data_path, "answer2label.txt")
ans2label = {}
label2ans = []
with open(ans2label_file, mode="r", encoding="utf-8") as reader:
for i, line in enumerate(reader):
data = json.loads(line)
ans = data["answer"]
label = data["label"]
label = int(label)
assert label == i
ans2label[ans] = i
label2ans.append(ans)
self.ans2label = ans2label
self.label2ans = label2ans
@staticmethod
def get_index_files(split, task=None):
if split == "train":
return ("vqa.train.jsonl", "vqa.trainable_val.jsonl")
elif split == "val":
return ("vqa.rest_val.jsonl", )
elif split == "test":
return ("vqa.test.jsonl", )
elif split == "test-dev":
return ("vqa.test-dev.jsonl", )
else:
raise RuntimeError("split %s is not found!" % split)
def __getitem__(self, index: int):
data = super().__getitem__(index)
if "labels" in self.items[index] and len(self.items[index]["labels"]) > 0:
labels = [0.] * len(self.label2ans)
for l, s in zip(self.items[index]["labels"], self.items[index]["scores"]):
labels[l] = s
data["labels"] = torch.FloatTensor(labels)
else:
data["qid"] = self.items[index]["qid"]
return data
@staticmethod
def get_score(occurences):
if occurences == 0:
return 0.0
elif occurences == 1:
return 0.3
elif occurences == 2:
return 0.6
elif occurences == 3:
return 0.9
else:
return 1.0
@classmethod
def make_dataset_index(cls, data_path, tokenizer, annotation_data_path):
with open(os.path.join(annotation_data_path, "v2_OpenEnded_mscoco_train2014_questions.json"), "r") as fp:
questions_train2014 = json.load(fp)["questions"]
with open(os.path.join(annotation_data_path, "v2_OpenEnded_mscoco_val2014_questions.json"), "r") as fp:
questions_val2014 = json.load(fp)["questions"]
with open(os.path.join(annotation_data_path, "v2_OpenEnded_mscoco_test2015_questions.json"), "r") as fp:
questions_test2015 = json.load(fp)["questions"]
with open(os.path.join(annotation_data_path, "v2_OpenEnded_mscoco_test-dev2015_questions.json"), "r") as fp:
questions_test_dev2015 = json.load(fp)["questions"]
with open(os.path.join(annotation_data_path, "v2_mscoco_train2014_annotations.json"), "r") as fp:
annotations_train2014 = json.load(fp)["annotations"]
with open(os.path.join(annotation_data_path, "v2_mscoco_val2014_annotations.json"), "r") as fp:
annotations_val2014 = json.load(fp)["annotations"]
annotations = dict()
for split, questions in zip(
["train", "val", "test", "test-dev"],
[questions_train2014, questions_val2014, questions_test2015, questions_test_dev2015],
):
_annot = defaultdict(dict)
for q in questions:
question_text = q["question"]
tokens = tokenizer.tokenize(question_text)
token_ids = tokenizer.convert_tokens_to_ids(tokens)
assert q["question_id"] not in _annot[q["image_id"]]
_annot[q["image_id"]][q["question_id"]] = {
"question": question_text,
"token_ids": token_ids,
}
annotations[split] = _annot
all_major_answers = list()
for split, annots in zip(
["train", "val"], [annotations_train2014, annotations_val2014],
):
# _annot = annotations[split]
for q in annots:
all_major_answers.append(q["multiple_choice_answer"])
all_major_answers = [normalize_word(word) for word in all_major_answers]
counter = {k: v for k, v in Counter(all_major_answers).items() if v >= 9}
ans2label = {k: i for i, k in enumerate(counter.keys())}
label2ans = list(counter.keys())
for split, annots in zip(
["train", "val"], [annotations_train2014, annotations_val2014],
):
_annot = annotations[split]
for q in annots:
answers = q["answers"]
answer_count = {}
for answer in answers:
answer_ = answer["answer"]
answer_count[answer_] = answer_count.get(answer_, 0) + 1
labels = []
scores = []
for answer in answer_count:
if answer not in ans2label:
continue
labels.append(ans2label[answer])
score = cls.get_score(answer_count[answer])
scores.append(score)
assert "labels" not in _annot[q["image_id"]][q["question_id"]]
assert "question" in _annot[q["image_id"]][q["question_id"]]
_annot[q["image_id"]][q["question_id"]]["labels"] = labels
_annot[q["image_id"]][q["question_id"]]["scores"] = scores
for split in ["train", "val"]:
filtered_annot = dict()
for ik, iv in annotations[split].items():
new_q = dict()
for qk, qv in iv.items():
if len(qv["labels"]) != 0:
new_q[qk] = qv
if len(new_q) != 0:
filtered_annot[ik] = new_q
annotations[split] = filtered_annot
split2items = {}
for split in ["train", "val", "test", "test-dev"]:
annot = annotations[split]
split_name = {
"train": "train2014",
"val": "val2014",
"test": "test2015",
"test-dev": "test2015",
}[split]
paths = list(glob.glob(f"{data_path}/{split_name}/*.jpg"))
random.shuffle(paths)
annot_paths = [path for path in paths \
if int(path.split("/")[-1].split("_")[-1][:-4]) in annot]
if len(paths) == len(annot_paths):
print("all images have caption annotations")
else:
print("not all images have caption annotations")
print(len(paths), len(annot_paths), len(annot))
items = []
for path in annot_paths:
iid = int(path.split("/")[-1].split("_")[-1][:-4])
_annot = annotations[split][iid]
for qid in _annot:
q = _annot[qid]
if split in ["train", "val"]:
labels = q["labels"]
scores = q["scores"]
else:
labels, scores = [], []
items.append({
"image_path": os.path.join(split_name, path.split('/')[-1]),
"text_segment": q["token_ids"],
"labels": labels,
"scores": scores,
"qid": qid,
})
split2items[split] = items
_write_data_into_jsonl(items=items, jsonl_file=os.path.join(data_path, "vqa.%s.jsonl" % split))
# Following ViLT, we use 1000 images of the original val set as the final val set
val_image2items = defaultdict(list)
for item in split2items["val"]:
val_image2items[item["image_path"]].append(item)
print("Contains %d image and %d pairs for val set!" % (len(val_image2items), len(split2items["val"])))
val_images = list(val_image2items.keys())
random.shuffle(val_images)
trainable_val = []
rest_val = []
for i, image_id in enumerate(val_images):
if i < 1000:
rest_val += val_image2items[image_id]
else:
trainable_val += val_image2items[image_id]
_write_data_into_jsonl(items=trainable_val, jsonl_file=os.path.join(data_path, "vqa.trainable_val.jsonl"))
_write_data_into_jsonl(items=rest_val, jsonl_file=os.path.join(data_path, "vqa.rest_val.jsonl"))
with open(os.path.join(data_path, "answer2label.txt"), mode="w", encoding="utf-8") as writer:
for ans in ans2label:
to_json = {
"answer": ans,
"label": ans2label[ans]
}
writer.write("%s\n" % json.dumps(to_json))
class RetrievalDataset(BaseDataset):
@staticmethod
def get_index_files(split, task=None):
if split == "train":
return (f"{task}.train.jsonl", )
elif split == "val":
return (f"{task}.val.jsonl", )
elif split == "test":
return (f"{task}.test.jsonl", )
else:
raise RuntimeError("split %s is not found!" % split)
def __getitem__(self, index: int):
data = super().__getitem__(index)
data["image_id"] = self.items[index]["image_id"]
return data
@staticmethod
def make_flickr30k_dataset_index(data_path, tokenizer, karpathy_path):
with open(os.path.join(karpathy_path, "dataset_flickr30k.json"), "r") as reader:
captions = json.loads(reader.read())
captions = captions["images"]
split2items = defaultdict(list)
split2images = defaultdict(set)
for each_item in captions:
image_path = os.path.join("flickr30k-images", each_item["filename"])
split = each_item["split"]
for text_segment in each_item["sentences"]:
tokens = tokenizer.tokenize(text_segment["raw"])
token_ids = tokenizer.convert_tokens_to_ids(tokens)
split2items[split].append({
"image_path": image_path,
"text_segment": token_ids,
"image_id": len(split2images[split]),
})
assert each_item["filename"] not in split2images[split]
split2images[split].add(each_item["filename"])
for split in split2items:
print("%d images and %d image-text pairs!" % (len(split2images[split]), len(split2items[split])))
_write_data_into_jsonl(split2items[split], os.path.join(data_path, "flickr30k.%s.jsonl" % split))
@staticmethod
def make_coco_dataset_index(data_path, tokenizer):
_make_retrieval_coco_karpathy_dataset_index(data_path, tokenizer, split=("train", "restval"), split_name="train")
_make_retrieval_coco_karpathy_dataset_index(data_path, tokenizer, split=("val", ), split_name="val")
_make_retrieval_coco_karpathy_dataset_index(data_path, tokenizer, split=("test", ), split_name="test")
class CaptioningDataset(BaseDataset):
def __init__(self, data_path, split, transform,
tokenizer, num_max_bpe_tokens, task, mask_prob):
super().__init__(
data_path=data_path, split=split,
transform=transform, tokenizer=tokenizer,
num_max_bpe_tokens=num_max_bpe_tokens, task=task,
)
self.mask_token_id = tokenizer.mask_token_id
self.language_vocab_size = tokenizer.vocab_size
self.mask_prob = mask_prob
@staticmethod
def get_index_files(split, task=None):
if split == "train":
return ("coco_captioning.train.jsonl", )
elif split == "val":
return (f"{task}.val.jsonl", )
elif split == "test":
return (f"{task}.test.jsonl", )
else:
raise RuntimeError("split %s is not found!" % split)
def _get_mask_token(self, token):
p = random.random()
if p < 0.8:
return self.mask_token_id
elif p < 0.9:
return token
else:
return random.randint(3, self.language_vocab_size - 1)
def _masking_on_text_tokens(self, tokens, num_tokens, mask_prob):
bool_masked_pos = [0] * len(tokens)
to_mask = min(int(num_tokens * mask_prob + 0.5), num_tokens - 1)
to_mask = max(to_mask, 1)
num_masked_tokens = 0
while num_masked_tokens < to_mask:
i = random.randint(1, num_tokens - 1)
if bool_masked_pos[i] == 0:
bool_masked_pos[i] = 1
tokens[i] = self._get_mask_token(tokens[i])
num_masked_tokens += 1
return tokens, bool_masked_pos
def __getitem__(self, index: int):
data = dict()
item = self.items[index]
img_path = item["image_path"]
img = self._get_image(img_path)
data["image"] = img
data["image_id"] = item["image_id"]
text_segment = item["text_segment"]
if text_segment is not None:
language_tokens, padding_mask, num_tokens = self._get_text_segment(text_segment)
masked_tokens = language_tokens[:]
masked_tokens, language_masked_pos = \
self._masking_on_text_tokens(masked_tokens, num_tokens, self.mask_prob)
data["language_tokens"] = language_tokens
data["masked_tokens"] = masked_tokens
data["language_masked_pos"] = language_masked_pos
data["padding_mask"] = padding_mask
return data
@staticmethod
def make_coco_captioning_dataset_index(data_path, tokenizer):
_make_captioning_coco_karpathy_dataset_index(data_path, tokenizer, split=("train", "restval"), split_name="train")
_make_captioning_coco_karpathy_dataset_index(data_path, tokenizer, split=("val", ), split_name="val")
_make_captioning_coco_karpathy_dataset_index(data_path, tokenizer, split=("test", ), split_name="test")
@staticmethod
def make_nocaps_captioning_dataset_index(data_path):
_make_nocaps_dataset_index(data_path, split="val")
_make_nocaps_dataset_index(data_path, split="test")
task2dataset = {
"nlvr2": NLVR2Dataset,
"vqav2": VQAv2Dataset,
"flickr30k": RetrievalDataset,
"coco_retrieval": RetrievalDataset,
"coco_captioning": CaptioningDataset,
"nocaps": CaptioningDataset,
"imagenet": ImageNetDataset,
}
def create_dataloader(dataset, is_train, batch_size, num_workers, pin_mem, dist_eval=False):
if is_train or dist_eval:
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
if not is_train and dist_eval and len(dataset) % num_tasks != 0:
print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
'This will slightly alter validation results as extra duplicate entries are added to achieve '
'equal num of samples per-process.')
sampler = torch.utils.data.DistributedSampler(
dataset, num_replicas=num_tasks, rank=global_rank, shuffle=is_train
)
else:
sampler = torch.utils.data.SequentialSampler(dataset)
return torch.utils.data.DataLoader(
dataset, sampler=sampler,
batch_size=batch_size,
num_workers=num_workers,
pin_memory=pin_mem,
drop_last=is_train,
collate_fn=utils.merge_batch_tensors_by_dict_key,
)
def build_transform(is_train, args):
if args.task in ["imagenet"]:
return build_imagenet_transform(is_train, args)
if is_train:
t = [
RandomResizedCropAndInterpolation(args.input_size, scale=(0.5, 1.0), interpolation=args.train_interpolation),
transforms.RandomHorizontalFlip(),
]
if args.randaug:
t.append(
RandomAugment(
2, 7, isPIL=True,
augs=[
'Identity','AutoContrast','Equalize','Brightness','Sharpness',
'ShearX', 'ShearY', 'TranslateX', 'TranslateY', 'Rotate',
]))
t += [
transforms.ToTensor(),
transforms.Normalize(mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD),
]
t = transforms.Compose(t)
else:
t = transforms.Compose([
transforms.Resize((args.input_size, args.input_size), interpolation=3),
transforms.ToTensor(),
transforms.Normalize(mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD)
])
return t
def build_imagenet_transform(is_train, args):
resize_im = args.input_size > 32
if is_train:
# this should always dispatch to transforms_imagenet_train
transform = create_transform(
input_size=args.input_size,
is_training=True,
color_jitter=args.color_jitter,
auto_augment=args.aa,
interpolation=args.train_interpolation,
re_prob=args.reprob,
re_mode=args.remode,
re_count=args.recount,
mean=IMAGENET_DEFAULT_MEAN,
std=IMAGENET_DEFAULT_STD,
)
if not resize_im:
# replace RandomResizedCropAndInterpolation with
# RandomCrop
transform.transforms[0] = transforms.RandomCrop(
args.input_size, padding=4)
return transform
t = []
if resize_im:
if args.crop_pct is None:
args.crop_pct = 1.0
size = int(args.input_size / args.crop_pct)
t.append(
transforms.Resize(size, interpolation=3), # to maintain same ratio w.r.t. 224 images
)
t.append(transforms.CenterCrop(args.input_size))
t.append(transforms.ToTensor())
t.append(transforms.Normalize(mean=IMAGENET_DEFAULT_MEAN, std=IMAGENET_DEFAULT_STD))
return transforms.Compose(t)
def get_sentencepiece_model_for_beit3(args):
from transformers import XLMRobertaTokenizer
return XLMRobertaTokenizer(args.sentencepiece_model)
def create_dataset_by_split(args, split, is_train=True):
transform = build_transform(is_train=is_train, args=args)
dataset_class = task2dataset[args.task]
tokenizer = get_sentencepiece_model_for_beit3(args)
opt_kwargs = {}
if args.task in ["coco_captioning", "nocaps"]:
opt_kwargs["mask_prob"] = args.captioning_mask_prob
dataset = dataset_class(
data_path=args.data_path, split=split,
transform=transform, tokenizer=tokenizer,
num_max_bpe_tokens=args.num_max_bpe_tokens,
task=args.task, **opt_kwargs,
)
if is_train:
batch_size = args.batch_size
elif hasattr(args, "eval_batch_size") and args.eval_batch_size is not None:
batch_size = args.eval_batch_size
else:
batch_size = int(args.batch_size * 1.5)
return create_dataloader(
dataset, is_train=is_train, batch_size=batch_size,
num_workers=args.num_workers, pin_mem=args.pin_mem, dist_eval=args.dist_eval,
)
def create_downstream_dataset(args, is_eval=False):
if is_eval:
return create_dataset_by_split(args, split="test", is_train=False)
else:
return \
create_dataset_by_split(args, split="train", is_train=True), \
create_dataset_by_split(args, split="val", is_train=True)