Spaces:
Runtime error
Runtime error
# -------------------------------------------------------- | |
# Image as a Foreign Language: BEiT Pretraining for Vision and Vision-Language Tasks (https://arxiv.org/abs/2208.10442) | |
# Github source: https://github.com/microsoft/unilm/tree/master/beit3 | |
# Copyright (c) 2023 Microsoft | |
# Licensed under The MIT License [see LICENSE for details] | |
# --------------------------------------------------------' | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from timm.models.registry import register_model | |
import numpy as np | |
import utils | |
from modeling_utils import BEiT3Wrapper, _get_base_config, _get_large_config | |
class TwoLayerMLP(nn.Module): | |
def __init__( | |
self, | |
in_features, | |
hidden_features, | |
out_features, | |
norm_layer, | |
norm_input=True, | |
): | |
super().__init__() | |
self.norm1 = norm_layer(in_features) if norm_input else nn.Identity() | |
self.dense1 = nn.Linear(in_features, hidden_features) | |
self.norm2 = norm_layer(hidden_features) | |
self.act = nn.GELU() | |
self.dense2 = nn.Linear(hidden_features, out_features) | |
def forward(self, x): | |
x = self.norm1(x) | |
x = self.dense1(x) | |
x = self.norm2(x) | |
x = self.act(x) | |
return self.dense2(x) | |
class Pooler(nn.Module): | |
def __init__(self, input_features, output_features, norm_layer): | |
super().__init__() | |
self.norm = norm_layer(input_features) | |
self.dense = nn.Linear(input_features, output_features) | |
self.activation = nn.Tanh() | |
def forward(self, x): | |
cls_rep = x[:, 0, :] | |
cls_rep = self.norm(cls_rep) | |
pooled_output = self.dense(cls_rep) | |
pooled_output = self.activation(pooled_output) | |
return pooled_output | |
class BEiT3ForVisualReasoning(BEiT3Wrapper): | |
def __init__( | |
self, | |
args, | |
num_classes, | |
norm_layer=nn.LayerNorm, | |
**kwargs | |
): | |
super(BEiT3ForVisualReasoning, self).__init__(args=args) | |
embed_dim = args.encoder_embed_dim | |
self.head = TwoLayerMLP( | |
in_features=embed_dim * 4, | |
hidden_features=embed_dim * 2, | |
out_features=num_classes, | |
norm_layer=norm_layer, | |
) | |
init_scale = 0.001 | |
self.head.apply(self._init_weights) | |
if isinstance(self.head.dense1, nn.Linear): | |
self.head.dense1.weight.data.mul_(init_scale) | |
self.head.dense1.bias.data.mul_(init_scale) | |
if isinstance(self.head.dense2, nn.Linear): | |
self.head.dense2.weight.data.mul_(init_scale) | |
self.head.dense2.bias.data.mul_(init_scale) | |
def forward(self, image_a, image_b, text_description, padding_mask, **kwargs): | |
bsz, _ = text_description.size() | |
vision_input = torch.cat((image_a, image_b), dim=0) | |
language_input = torch.cat((text_description, text_description), dim=0) | |
padding_mask = torch.cat((padding_mask, padding_mask), dim=0) | |
outputs = self.beit3( | |
textual_tokens=language_input, | |
visual_tokens=vision_input, | |
text_padding_position=padding_mask, | |
) | |
x = outputs["encoder_out"] | |
multiway_split_position = outputs["multiway_split_position"] | |
vision_cls = x[:, 0, :] | |
language_cls = x[:, multiway_split_position, :] | |
cls_rep = torch.cat((vision_cls, language_cls), dim=-1) | |
a, b = torch.split(cls_rep, split_size_or_sections=[bsz, bsz], dim=0) | |
cls_rep = torch.cat((a, b), dim=-1) | |
return self.head(cls_rep) | |
class BEiT3ForImageClassification(BEiT3Wrapper): | |
def __init__( | |
self, | |
args, | |
num_classes, | |
norm_layer=nn.LayerNorm, | |
**kwargs | |
): | |
super(BEiT3ForImageClassification, self).__init__(args=args) | |
embed_dim = args.encoder_embed_dim | |
self.fc_norm = norm_layer(embed_dim) | |
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
self.fc_norm.apply(self._init_weights) | |
self.head.apply(self._init_weights) | |
init_scale = 0.001 | |
if isinstance(self.head, nn.Linear): | |
self.head.weight.data.mul_(init_scale) | |
self.head.bias.data.mul_(init_scale) | |
def forward(self, image, **kwargs): | |
x = self.beit3(textual_tokens=None, visual_tokens=image)["encoder_out"] | |
t = x[:, 1:, :] | |
cls_x = self.fc_norm(t.mean(1)) | |
return self.head(cls_x) | |
class BEiT3ForCaptioning(BEiT3Wrapper): | |
def __init__( | |
self, | |
args, | |
**kwargs | |
): | |
super(BEiT3ForCaptioning, self).__init__(args=args) | |
embed_dim = args.encoder_embed_dim | |
self.mlm_head = nn.Linear(embed_dim, args.vocab_size) | |
self.mlm_head.apply(self._init_weights) | |
def forward(self, image, text_ids, padding_mask, language_masked_pos, text_len=None, incremental_state=None, **kwargs): | |
text_len = text_len if text_len is not None else text_ids.size(1) | |
image_len = self.beit3.vision_embed.num_position_embeddings() | |
max_len = text_len + image_len | |
uni_mask = torch.zeros((max_len, max_len), dtype=torch.long, device=text_ids.device) | |
i_start, i_end = 0, image_len | |
t_start, t_end = image_len, max_len | |
# triangle mask for caption to caption | |
uni_mask[t_start:t_end, t_start:t_end] = torch.tril(torch.ones(text_len, text_len, dtype=torch.long, device=text_ids.device)) | |
# full attention for caption to image | |
uni_mask[t_start:t_end, i_start:i_end] = 1 | |
# full attention for image to image | |
uni_mask[i_start:i_end, i_start:i_end] = 1 | |
uni_mask = 1-uni_mask | |
if incremental_state is not None: | |
for idx in range(self.get_num_layers()): | |
if idx not in incremental_state: | |
incremental_state[idx] = {} | |
# for incremental decoding | |
positions = None | |
if image is None: | |
uni_mask = uni_mask[-2:] | |
padding_mask = None | |
# start position (2 (fairseq starts at 2) + cur_position) is equal to text_len | |
positions = torch.arange(text_len, text_ids.size(1) + text_len, device=text_ids.device).long().unsqueeze(0) | |
outputs = self.beit3( | |
textual_tokens=text_ids, | |
visual_tokens=image, | |
text_padding_position=padding_mask, | |
attn_mask=uni_mask, | |
incremental_state=incremental_state, | |
positions=positions, | |
) | |
if image is not None: | |
text_feats = outputs["encoder_out"][:, image_len:] | |
else: | |
text_feats = outputs["encoder_out"] | |
if language_masked_pos is not None: | |
text_feats = text_feats[language_masked_pos.bool()] | |
return self.mlm_head(text_feats), incremental_state | |
class BEiT3ForVisualQuestionAnswering(BEiT3Wrapper): | |
def __init__( | |
self, | |
args, | |
num_classes, | |
norm_layer=nn.LayerNorm, | |
**kwargs | |
): | |
super(BEiT3ForVisualQuestionAnswering, self).__init__(args=args) | |
embed_dim = args.encoder_embed_dim | |
self.pooler = Pooler( | |
input_features=embed_dim, | |
output_features=embed_dim, | |
norm_layer=norm_layer, | |
) | |
self.pooler.apply(self._init_weights) | |
self.head = nn.Sequential( | |
nn.Linear(embed_dim, embed_dim * 2), | |
norm_layer(embed_dim * 2), | |
nn.GELU(), | |
nn.Linear(embed_dim * 2, num_classes), | |
) | |
self.head.apply(self._init_weights) | |
def forward(self, image, question, padding_mask, **kwargs): | |
outputs = self.beit3( | |
textual_tokens=question, | |
visual_tokens=image, | |
text_padding_position=padding_mask, | |
) | |
x = outputs["encoder_out"] | |
cls_rep = self.pooler(x) | |
return self.head(cls_rep) | |
class BEiT3ForRetrieval(BEiT3Wrapper): | |
def __init__( | |
self, | |
args, | |
**kwargs | |
): | |
super(BEiT3ForRetrieval, self).__init__(args=args) | |
embed_dim = args.encoder_embed_dim | |
self.language_head = nn.Linear(embed_dim, embed_dim, bias=False) | |
self.vision_head = nn.Linear(embed_dim, embed_dim, bias=False) | |
self.language_head.apply(self._init_weights) | |
self.vision_head.apply(self._init_weights) | |
self.criterion = utils.ClipLoss( | |
rank=utils.get_rank(), | |
world_size=utils.get_world_size(), | |
) | |
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) | |
def forward(self, image=None, text_description=None, padding_mask=None, only_infer=False, **kwargs): | |
if image is not None: | |
outputs = self.beit3( | |
textual_tokens=None, | |
visual_tokens=image, | |
text_padding_position=None, | |
) | |
x = outputs["encoder_out"] | |
vision_cls = self.vision_head(x[:, 0, :]) | |
vision_cls = F.normalize(vision_cls, dim=-1) | |
else: | |
vision_cls = None | |
if text_description is not None: | |
outputs = self.beit3( | |
textual_tokens=text_description, | |
visual_tokens=None, | |
text_padding_position=padding_mask, | |
) | |
x = outputs["encoder_out"] | |
language_cls = self.language_head(x[:, 0, :]) | |
language_cls = F.normalize(language_cls, dim=-1) | |
else: | |
language_cls = None | |
if only_infer: | |
return vision_cls, language_cls | |
else: | |
loss, logits_per_image, logits_per_text = self.criterion( | |
vision_cls, language_cls, self.logit_scale.exp()) | |
return loss, vision_cls, language_cls | |
def beit3_base_patch16_224_imageclassification(pretrained=False, **kwargs): | |
args = _get_base_config(**kwargs) | |
args.normalize_output = False | |
model = BEiT3ForImageClassification(args, num_classes=1000, **kwargs) | |
return model | |
def beit3_large_patch16_224_imageclassification(pretrained=False, **kwargs): | |
args = _get_large_config(**kwargs) | |
args.normalize_output = False | |
model = BEiT3ForImageClassification(args, num_classes=1000, **kwargs) | |
return model | |
def beit3_base_patch16_224_nlvr2(pretrained=False, **kwargs): | |
args = _get_base_config(**kwargs) | |
model = BEiT3ForVisualReasoning(args, num_classes=2, **kwargs) | |
return model | |
def beit3_large_patch16_224_nlvr2(pretrained=False, **kwargs): | |
args = _get_large_config(**kwargs) | |
model = BEiT3ForVisualReasoning(args, num_classes=2, **kwargs) | |
return model | |
def beit3_base_patch16_384_vqav2(pretrained=False, **kwargs): | |
args = _get_base_config(img_size=384, **kwargs) | |
args.normalize_output = False | |
model = BEiT3ForVisualQuestionAnswering(args, num_classes=3129, **kwargs) | |
return model | |
def beit3_base_patch16_480_vqav2(pretrained=False, **kwargs): | |
args = _get_base_config(img_size=480, **kwargs) | |
args.normalize_output = False | |
model = BEiT3ForVisualQuestionAnswering(args, num_classes=3129, **kwargs) | |
return model | |
def beit3_large_patch16_384_vqav2(pretrained=False, **kwargs): | |
args = _get_large_config(img_size=384, **kwargs) | |
args.normalize_output = False | |
model = BEiT3ForVisualQuestionAnswering(args, num_classes=3129, **kwargs) | |
return model | |
def beit3_large_patch16_480_vqav2(pretrained=False, **kwargs): | |
args = _get_large_config(img_size=480, **kwargs) | |
args.normalize_output = False | |
model = BEiT3ForVisualQuestionAnswering(args, num_classes=3129, **kwargs) | |
return model | |
def beit3_large_patch16_768_vqav2(pretrained=False, **kwargs): | |
args = _get_large_config(img_size=768, **kwargs) | |
args.normalize_output = False | |
model = BEiT3ForVisualQuestionAnswering(args, num_classes=3129, **kwargs) | |
return model | |
def beit3_base_patch16_224_captioning(pretrained=False, **kwargs): | |
args = _get_base_config(**kwargs) | |
model = BEiT3ForCaptioning(args, **kwargs) | |
return model | |
def beit3_base_patch16_480_captioning(pretrained=False, **kwargs): | |
args = _get_base_config(img_size=480, **kwargs) | |
model = BEiT3ForCaptioning(args, **kwargs) | |
return model | |
def beit3_large_patch16_480_captioning(pretrained=False, **kwargs): | |
args = _get_large_config(img_size=480, **kwargs) | |
model = BEiT3ForCaptioning(args, **kwargs) | |
return model | |
def beit3_base_patch16_224_retrieval(pretrained=False, **kwargs): | |
args = _get_base_config(**kwargs) | |
model = BEiT3ForRetrieval(args, **kwargs) | |
return model | |
def beit3_base_patch16_384_retrieval(pretrained=False, **kwargs): | |
args = _get_base_config(img_size=384, **kwargs) | |
model = BEiT3ForRetrieval(args, **kwargs) | |
return model | |
def beit3_large_patch16_384_retrieval(pretrained=False, **kwargs): | |
args = _get_large_config(img_size=384, **kwargs) | |
model = BEiT3ForRetrieval(args, **kwargs) | |
return model | |