Spaces:
Runtime error
Runtime error
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
from collections import OrderedDict | |
import torch | |
from tqdm import tqdm | |
from model.segment_anything_2.sam2.modeling.sam2_base import NO_OBJ_SCORE, SAM2Base | |
from model.segment_anything_2.sam2.utils.misc import concat_points, fill_holes_in_mask_scores, load_video_frames | |
class SAM2VideoPredictor(SAM2Base): | |
"""The predictor class to handle user interactions and manage inference states.""" | |
def __init__( | |
self, | |
fill_hole_area=0, | |
# whether to apply non-overlapping constraints on the output object masks | |
non_overlap_masks=False, | |
# whether to clear non-conditioning memory of the surrounding frames (which may contain outdated information) after adding correction clicks; | |
# note that this would only apply to *single-object tracking* unless `clear_non_cond_mem_for_multi_obj` is also set to True) | |
clear_non_cond_mem_around_input=False, | |
# whether to also clear non-conditioning memory of the surrounding frames (only effective when `clear_non_cond_mem_around_input` is True). | |
clear_non_cond_mem_for_multi_obj=False, | |
**kwargs, | |
): | |
super().__init__(**kwargs) | |
self.fill_hole_area = fill_hole_area | |
self.non_overlap_masks = non_overlap_masks | |
self.clear_non_cond_mem_around_input = clear_non_cond_mem_around_input | |
self.clear_non_cond_mem_for_multi_obj = clear_non_cond_mem_for_multi_obj | |
def init_state( | |
self, | |
video_path, | |
offload_video_to_cpu=False, | |
offload_state_to_cpu=False, | |
async_loading_frames=False, | |
): | |
"""Initialize a inference state.""" | |
images, video_height, video_width = load_video_frames( | |
video_path=video_path, | |
image_size=self.image_size, | |
offload_video_to_cpu=offload_video_to_cpu, | |
async_loading_frames=async_loading_frames, | |
) | |
inference_state = {} | |
inference_state["images"] = images | |
inference_state["num_frames"] = len(images) | |
# whether to offload the video frames to CPU memory | |
# turning on this option saves the GPU memory with only a very small overhead | |
inference_state["offload_video_to_cpu"] = offload_video_to_cpu | |
# whether to offload the inference state to CPU memory | |
# turning on this option saves the GPU memory at the cost of a lower tracking fps | |
# (e.g. in a test case of 768x768 model, fps dropped from 27 to 24 when tracking one object | |
# and from 24 to 21 when tracking two objects) | |
inference_state["offload_state_to_cpu"] = offload_state_to_cpu | |
# the original video height and width, used for resizing final output scores | |
inference_state["video_height"] = video_height | |
inference_state["video_width"] = video_width | |
inference_state["device"] = torch.device("cuda") | |
if offload_state_to_cpu: | |
inference_state["storage_device"] = torch.device("cpu") | |
else: | |
inference_state["storage_device"] = torch.device("cuda") | |
# inputs on each frame | |
inference_state["point_inputs_per_obj"] = {} | |
inference_state["mask_inputs_per_obj"] = {} | |
# visual features on a small number of recently visited frames for quick interactions | |
inference_state["cached_features"] = {} | |
# values that don't change across frames (so we only need to hold one copy of them) | |
inference_state["constants"] = {} | |
# mapping between client-side object id and model-side object index | |
inference_state["obj_id_to_idx"] = OrderedDict() | |
inference_state["obj_idx_to_id"] = OrderedDict() | |
inference_state["obj_ids"] = [] | |
# A storage to hold the model's tracking results and states on each frame | |
inference_state["output_dict"] = { | |
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>} | |
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>} | |
} | |
# Slice (view) of each object tracking results, sharing the same memory with "output_dict" | |
inference_state["output_dict_per_obj"] = {} | |
# A temporary storage to hold new outputs when user interact with a frame | |
# to add clicks or mask (it's merged into "output_dict" before propagation starts) | |
inference_state["temp_output_dict_per_obj"] = {} | |
# Frames that already holds consolidated outputs from click or mask inputs | |
# (we directly use their consolidated outputs during tracking) | |
inference_state["consolidated_frame_inds"] = { | |
"cond_frame_outputs": set(), # set containing frame indices | |
"non_cond_frame_outputs": set(), # set containing frame indices | |
} | |
# metadata for each tracking frame (e.g. which direction it's tracked) | |
inference_state["tracking_has_started"] = False | |
inference_state["frames_already_tracked"] = {} | |
# Warm up the visual backbone and cache the image feature on frame 0 | |
self._get_image_feature(inference_state, frame_idx=0, batch_size=1) | |
return inference_state | |
def _obj_id_to_idx(self, inference_state, obj_id): | |
"""Map client-side object id to model-side object index.""" | |
obj_idx = inference_state["obj_id_to_idx"].get(obj_id, None) | |
if obj_idx is not None: | |
return obj_idx | |
# This is a new object id not sent to the server before. We only allow adding | |
# new objects *before* the tracking starts. | |
allow_new_object = not inference_state["tracking_has_started"] | |
if allow_new_object: | |
# get the next object slot | |
obj_idx = len(inference_state["obj_id_to_idx"]) | |
inference_state["obj_id_to_idx"][obj_id] = obj_idx | |
inference_state["obj_idx_to_id"][obj_idx] = obj_id | |
inference_state["obj_ids"] = list(inference_state["obj_id_to_idx"]) | |
# set up input and output structures for this object | |
inference_state["point_inputs_per_obj"][obj_idx] = {} | |
inference_state["mask_inputs_per_obj"][obj_idx] = {} | |
inference_state["output_dict_per_obj"][obj_idx] = { | |
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>} | |
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>} | |
} | |
inference_state["temp_output_dict_per_obj"][obj_idx] = { | |
"cond_frame_outputs": {}, # dict containing {frame_idx: <out>} | |
"non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>} | |
} | |
return obj_idx | |
else: | |
raise RuntimeError( | |
f"Cannot add new object id {obj_id} after tracking starts. " | |
f"All existing object ids: {inference_state['obj_ids']}. " | |
f"Please call 'reset_state' to restart from scratch." | |
) | |
def _obj_idx_to_id(self, inference_state, obj_idx): | |
"""Map model-side object index to client-side object id.""" | |
return inference_state["obj_idx_to_id"][obj_idx] | |
def _get_obj_num(self, inference_state): | |
"""Get the total number of unique object ids received so far in this session.""" | |
return len(inference_state["obj_idx_to_id"]) | |
def add_new_points( | |
self, | |
inference_state, | |
frame_idx, | |
obj_id, | |
points, | |
labels, | |
clear_old_points=True, | |
normalize_coords=True, | |
): | |
"""Add new points to a frame.""" | |
obj_idx = self._obj_id_to_idx(inference_state, obj_id) | |
point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx] | |
mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx] | |
if not isinstance(points, torch.Tensor): | |
points = torch.tensor(points, dtype=torch.float32) | |
if not isinstance(labels, torch.Tensor): | |
labels = torch.tensor(labels, dtype=torch.int32) | |
if points.dim() == 2: | |
points = points.unsqueeze(0) # add batch dimension | |
if labels.dim() == 1: | |
labels = labels.unsqueeze(0) # add batch dimension | |
if normalize_coords: | |
video_H = inference_state["video_height"] | |
video_W = inference_state["video_width"] | |
points = points / torch.tensor([video_W, video_H]).to(points.device) | |
# scale the (normalized) coordinates by the model's internal image size | |
points = points * self.image_size | |
points = points.to(inference_state["device"]) | |
labels = labels.to(inference_state["device"]) | |
if not clear_old_points: | |
point_inputs = point_inputs_per_frame.get(frame_idx, None) | |
else: | |
point_inputs = None | |
point_inputs = concat_points(point_inputs, points, labels) | |
point_inputs_per_frame[frame_idx] = point_inputs | |
mask_inputs_per_frame.pop(frame_idx, None) | |
# If this frame hasn't been tracked before, we treat it as an initial conditioning | |
# frame, meaning that the inputs points are to generate segments on this frame without | |
# using any memory from other frames, like in SAM. Otherwise (if it has been tracked), | |
# the input points will be used to correct the already tracked masks. | |
is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"] | |
# whether to track in reverse time order | |
if is_init_cond_frame: | |
reverse = False | |
else: | |
reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"] | |
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx] | |
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx] | |
# Add a frame to conditioning output if it's an initial conditioning frame or | |
# if the model sees all frames receiving clicks/mask as conditioning frames. | |
is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond | |
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" | |
# Get any previously predicted mask logits on this object and feed it along with | |
# the new clicks into the SAM mask decoder. | |
prev_sam_mask_logits = None | |
# lookup temporary output dict first, which contains the most recent output | |
# (if not found, then lookup conditioning and non-conditioning frame output) | |
prev_out = obj_temp_output_dict[storage_key].get(frame_idx) | |
if prev_out is None: | |
prev_out = obj_output_dict["cond_frame_outputs"].get(frame_idx) | |
if prev_out is None: | |
prev_out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx) | |
if prev_out is not None and prev_out["pred_masks"] is not None: | |
prev_sam_mask_logits = prev_out["pred_masks"].cuda(non_blocking=True) | |
# Clamp the scale of prev_sam_mask_logits to avoid rare numerical issues. | |
prev_sam_mask_logits = torch.clamp(prev_sam_mask_logits, -32.0, 32.0) | |
current_out, _ = self._run_single_frame_inference( | |
inference_state=inference_state, | |
output_dict=obj_output_dict, # run on the slice of a single object | |
frame_idx=frame_idx, | |
batch_size=1, # run on the slice of a single object | |
is_init_cond_frame=is_init_cond_frame, | |
point_inputs=point_inputs, | |
mask_inputs=None, | |
reverse=reverse, | |
# Skip the memory encoder when adding clicks or mask. We execute the memory encoder | |
# at the beginning of `propagate_in_video` (after user finalize their clicks). This | |
# allows us to enforce non-overlapping constraints on all objects before encoding | |
# them into memory. | |
run_mem_encoder=False, | |
prev_sam_mask_logits=prev_sam_mask_logits, | |
) | |
# Add the output to the output dict (to be used as future memory) | |
obj_temp_output_dict[storage_key][frame_idx] = current_out | |
# Resize the output mask to the original video resolution | |
obj_ids = inference_state["obj_ids"] | |
consolidated_out = self._consolidate_temp_output_across_obj( | |
inference_state, | |
frame_idx, | |
is_cond=is_cond, | |
run_mem_encoder=False, | |
consolidate_at_video_res=True, | |
) | |
_, video_res_masks = self._get_orig_video_res_output( | |
inference_state, consolidated_out["pred_masks_video_res"] | |
) | |
return frame_idx, obj_ids, video_res_masks | |
def add_new_mask( | |
self, | |
inference_state, | |
frame_idx, | |
obj_id, | |
mask, | |
): | |
"""Add new mask to a frame.""" | |
obj_idx = self._obj_id_to_idx(inference_state, obj_id) | |
point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx] | |
mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx] | |
if not isinstance(mask, torch.Tensor): | |
mask = torch.tensor(mask, dtype=torch.bool) | |
assert mask.dim() == 2 | |
mask_H, mask_W = mask.shape | |
mask_inputs_orig = mask[None, None] # add batch and channel dimension | |
mask_inputs_orig = mask_inputs_orig.float().to(inference_state["device"]) | |
# resize the mask if it doesn't match the model's image size | |
if mask_H != self.image_size or mask_W != self.image_size: | |
mask_inputs = torch.nn.functional.interpolate( | |
mask_inputs_orig, | |
size=(self.image_size, self.image_size), | |
align_corners=False, | |
mode="bilinear", | |
antialias=True, # use antialias for downsampling | |
) | |
mask_inputs = (mask_inputs >= 0.5).float() | |
else: | |
mask_inputs = mask_inputs_orig | |
mask_inputs_per_frame[frame_idx] = mask_inputs | |
point_inputs_per_frame.pop(frame_idx, None) | |
# If this frame hasn't been tracked before, we treat it as an initial conditioning | |
# frame, meaning that the inputs points are to generate segments on this frame without | |
# using any memory from other frames, like in SAM. Otherwise (if it has been tracked), | |
# the input points will be used to correct the already tracked masks. | |
is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"] | |
# whether to track in reverse time order | |
if is_init_cond_frame: | |
reverse = False | |
else: | |
reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"] | |
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx] | |
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx] | |
# Add a frame to conditioning output if it's an initial conditioning frame or | |
# if the model sees all frames receiving clicks/mask as conditioning frames. | |
is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond | |
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" | |
current_out, _ = self._run_single_frame_inference( | |
inference_state=inference_state, | |
output_dict=obj_output_dict, # run on the slice of a single object | |
frame_idx=frame_idx, | |
batch_size=1, # run on the slice of a single object | |
is_init_cond_frame=is_init_cond_frame, | |
point_inputs=None, | |
mask_inputs=mask_inputs, | |
reverse=reverse, | |
# Skip the memory encoder when adding clicks or mask. We execute the memory encoder | |
# at the beginning of `propagate_in_video` (after user finalize their clicks). This | |
# allows us to enforce non-overlapping constraints on all objects before encoding | |
# them into memory. | |
run_mem_encoder=False, | |
) | |
# Add the output to the output dict (to be used as future memory) | |
obj_temp_output_dict[storage_key][frame_idx] = current_out | |
# Resize the output mask to the original video resolution | |
obj_ids = inference_state["obj_ids"] | |
consolidated_out = self._consolidate_temp_output_across_obj( | |
inference_state, | |
frame_idx, | |
is_cond=is_cond, | |
run_mem_encoder=False, | |
consolidate_at_video_res=True, | |
) | |
_, video_res_masks = self._get_orig_video_res_output( | |
inference_state, consolidated_out["pred_masks_video_res"] | |
) | |
return frame_idx, obj_ids, video_res_masks | |
def add_new_text( | |
self, | |
inference_state, | |
frame_idx, | |
obj_id, | |
text, | |
clear_old_points=True, | |
normalize_coords=True, | |
): | |
"""Add new text to a frame.""" | |
obj_idx = self._obj_id_to_idx(inference_state, obj_id) | |
point_inputs_per_frame = inference_state["point_inputs_per_obj"][obj_idx] | |
mask_inputs_per_frame = inference_state["mask_inputs_per_obj"][obj_idx] | |
mask_inputs_per_frame.pop(frame_idx, None) | |
# If this frame hasn't been tracked before, we treat it as an initial conditioning | |
# frame, meaning that the inputs points are to generate segments on this frame without | |
# using any memory from other frames, like in SAM. Otherwise (if it has been tracked), | |
# the input points will be used to correct the already tracked masks. | |
is_init_cond_frame = frame_idx not in inference_state["frames_already_tracked"] | |
# whether to track in reverse time order | |
if is_init_cond_frame: | |
reverse = False | |
else: | |
reverse = inference_state["frames_already_tracked"][frame_idx]["reverse"] | |
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx] | |
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx] | |
# Add a frame to conditioning output if it's an initial conditioning frame or | |
# if the model sees all frames receiving clicks/mask as conditioning frames. | |
is_cond = is_init_cond_frame or self.add_all_frames_to_correct_as_cond | |
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" | |
# Get any previously predicted mask logits on this object and feed it along with | |
# the new clicks into the SAM mask decoder. | |
prev_sam_mask_logits = None | |
# lookup temporary output dict first, which contains the most recent output | |
# (if not found, then lookup conditioning and non-conditioning frame output) | |
prev_out = obj_temp_output_dict[storage_key].get(frame_idx) | |
if prev_out is None: | |
prev_out = obj_output_dict["cond_frame_outputs"].get(frame_idx) | |
if prev_out is None: | |
prev_out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx) | |
if prev_out is not None and prev_out["pred_masks"] is not None: | |
prev_sam_mask_logits = prev_out["pred_masks"].cuda(non_blocking=True) | |
# Clamp the scale of prev_sam_mask_logits to avoid rare numerical issues. | |
prev_sam_mask_logits = torch.clamp(prev_sam_mask_logits, -32.0, 32.0) | |
current_out, _ = self._run_single_frame_inference( | |
inference_state=inference_state, | |
output_dict=obj_output_dict, # run on the slice of a single object | |
frame_idx=frame_idx, | |
batch_size=1, # run on the slice of a single object | |
is_init_cond_frame=is_init_cond_frame, | |
point_inputs=None, | |
mask_inputs=None, | |
reverse=reverse, | |
# Skip the memory encoder when adding clicks or mask. We execute the memory encoder | |
# at the beginning of `propagate_in_video` (after user finalize their clicks). This | |
# allows us to enforce non-overlapping constraints on all objects before encoding | |
# them into memory. | |
run_mem_encoder=False, | |
prev_sam_mask_logits=prev_sam_mask_logits, | |
text_inputs=text | |
) | |
# Add the output to the output dict (to be used as future memory) | |
obj_temp_output_dict[storage_key][frame_idx] = current_out | |
# Resize the output mask to the original video resolution | |
obj_ids = inference_state["obj_ids"] | |
consolidated_out = self._consolidate_temp_output_across_obj( | |
inference_state, | |
frame_idx, | |
is_cond=is_cond, | |
run_mem_encoder=False, | |
consolidate_at_video_res=True, | |
) | |
_, video_res_masks = self._get_orig_video_res_output( | |
inference_state, consolidated_out["pred_masks_video_res"] | |
) | |
return frame_idx, obj_ids, video_res_masks | |
def _get_orig_video_res_output(self, inference_state, any_res_masks): | |
""" | |
Resize the object scores to the original video resolution (video_res_masks) | |
and apply non-overlapping constraints for final output. | |
""" | |
device = inference_state["device"] | |
video_H = inference_state["video_height"] | |
video_W = inference_state["video_width"] | |
any_res_masks = any_res_masks.to(device, non_blocking=True) | |
if any_res_masks.shape[-2:] == (video_H, video_W): | |
video_res_masks = any_res_masks | |
else: | |
video_res_masks = torch.nn.functional.interpolate( | |
any_res_masks, | |
size=(video_H, video_W), | |
mode="bilinear", | |
align_corners=False, | |
) | |
if self.non_overlap_masks: | |
video_res_masks = self._apply_non_overlapping_constraints(video_res_masks) | |
return any_res_masks, video_res_masks | |
def _consolidate_temp_output_across_obj( | |
self, | |
inference_state, | |
frame_idx, | |
is_cond, | |
run_mem_encoder, | |
consolidate_at_video_res=False, | |
): | |
""" | |
Consolidate the per-object temporary outputs in `temp_output_dict_per_obj` on | |
a frame into a single output for all objects, including | |
1) fill any missing objects either from `output_dict_per_obj` (if they exist in | |
`output_dict_per_obj` for this frame) or leave them as placeholder values | |
(if they don't exist in `output_dict_per_obj` for this frame); | |
2) if specified, rerun memory encoder after apply non-overlapping constraints | |
on the object scores. | |
""" | |
batch_size = self._get_obj_num(inference_state) | |
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" | |
# Optionally, we allow consolidating the temporary outputs at the original | |
# video resolution (to provide a better editing experience for mask prompts). | |
if consolidate_at_video_res: | |
assert not run_mem_encoder, "memory encoder cannot run at video resolution" | |
consolidated_H = inference_state["video_height"] | |
consolidated_W = inference_state["video_width"] | |
consolidated_mask_key = "pred_masks_video_res" | |
else: | |
consolidated_H = consolidated_W = self.image_size // 4 | |
consolidated_mask_key = "pred_masks" | |
# Initialize `consolidated_out`. Its "maskmem_features" and "maskmem_pos_enc" | |
# will be added when rerunning the memory encoder after applying non-overlapping | |
# constraints to object scores. Its "pred_masks" are prefilled with a large | |
# negative value (NO_OBJ_SCORE) to represent missing objects. | |
consolidated_out = { | |
"maskmem_features": None, | |
"maskmem_pos_enc": None, | |
consolidated_mask_key: torch.full( | |
size=(batch_size, 1, consolidated_H, consolidated_W), | |
fill_value=NO_OBJ_SCORE, | |
dtype=torch.float32, | |
device=inference_state["storage_device"], | |
), | |
"obj_ptr": torch.full( | |
size=(batch_size, self.hidden_dim), | |
fill_value=NO_OBJ_SCORE, | |
dtype=torch.float32, | |
device=inference_state["device"], | |
), | |
} | |
empty_mask_ptr = None | |
for obj_idx in range(batch_size): | |
obj_temp_output_dict = inference_state["temp_output_dict_per_obj"][obj_idx] | |
obj_output_dict = inference_state["output_dict_per_obj"][obj_idx] | |
out = obj_temp_output_dict[storage_key].get(frame_idx, None) | |
# If the object doesn't appear in "temp_output_dict_per_obj" on this frame, | |
# we fall back and look up its previous output in "output_dict_per_obj". | |
# We look up both "cond_frame_outputs" and "non_cond_frame_outputs" in | |
# "output_dict_per_obj" to find a previous output for this object. | |
if out is None: | |
out = obj_output_dict["cond_frame_outputs"].get(frame_idx, None) | |
if out is None: | |
out = obj_output_dict["non_cond_frame_outputs"].get(frame_idx, None) | |
# If the object doesn't appear in "output_dict_per_obj" either, we skip it | |
# and leave its mask scores to the default scores (i.e. the NO_OBJ_SCORE | |
# placeholder above) and set its object pointer to be a dummy pointer. | |
if out is None: | |
# Fill in dummy object pointers for those objects without any inputs or | |
# tracking outcomes on this frame (only do it under `run_mem_encoder=True`, | |
# i.e. when we need to build the memory for tracking). | |
if run_mem_encoder: | |
if empty_mask_ptr is None: | |
empty_mask_ptr = self._get_empty_mask_ptr( | |
inference_state, frame_idx | |
) | |
# fill object pointer with a dummy pointer (based on an empty mask) | |
consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = empty_mask_ptr | |
continue | |
# Add the temporary object output mask to consolidated output mask | |
obj_mask = out["pred_masks"] | |
consolidated_pred_masks = consolidated_out[consolidated_mask_key] | |
if obj_mask.shape[-2:] == consolidated_pred_masks.shape[-2:]: | |
consolidated_pred_masks[obj_idx : obj_idx + 1] = obj_mask | |
else: | |
# Resize first if temporary object mask has a different resolution | |
resized_obj_mask = torch.nn.functional.interpolate( | |
obj_mask, | |
size=consolidated_pred_masks.shape[-2:], | |
mode="bilinear", | |
align_corners=False, | |
) | |
consolidated_pred_masks[obj_idx : obj_idx + 1] = resized_obj_mask | |
consolidated_out["obj_ptr"][obj_idx : obj_idx + 1] = out["obj_ptr"] | |
# Optionally, apply non-overlapping constraints on the consolidated scores | |
# and rerun the memory encoder | |
if run_mem_encoder: | |
device = inference_state["device"] | |
high_res_masks = torch.nn.functional.interpolate( | |
consolidated_out["pred_masks"].to(device, non_blocking=True), | |
size=(self.image_size, self.image_size), | |
mode="bilinear", | |
align_corners=False, | |
) | |
if self.non_overlap_masks_for_mem_enc: | |
high_res_masks = self._apply_non_overlapping_constraints(high_res_masks) | |
maskmem_features, maskmem_pos_enc = self._run_memory_encoder( | |
inference_state=inference_state, | |
frame_idx=frame_idx, | |
batch_size=batch_size, | |
high_res_masks=high_res_masks, | |
is_mask_from_pts=True, # these frames are what the user interacted with | |
) | |
consolidated_out["maskmem_features"] = maskmem_features | |
consolidated_out["maskmem_pos_enc"] = maskmem_pos_enc | |
return consolidated_out | |
def _get_empty_mask_ptr(self, inference_state, frame_idx): | |
"""Get a dummy object pointer based on an empty mask on the current frame.""" | |
# A dummy (empty) mask with a single object | |
batch_size = 1 | |
mask_inputs = torch.zeros( | |
(batch_size, 1, self.image_size, self.image_size), | |
dtype=torch.float32, | |
device=inference_state["device"], | |
) | |
# Retrieve correct image features | |
( | |
_, | |
_, | |
current_vision_feats, | |
current_vision_pos_embeds, | |
feat_sizes, | |
) = self._get_image_feature(inference_state, frame_idx, batch_size) | |
# Feed the empty mask and image feature above to get a dummy object pointer | |
current_out = self.track_step( | |
frame_idx=frame_idx, | |
is_init_cond_frame=True, | |
current_vision_feats=current_vision_feats, | |
current_vision_pos_embeds=current_vision_pos_embeds, | |
feat_sizes=feat_sizes, | |
point_inputs=None, | |
mask_inputs=mask_inputs, | |
output_dict={}, | |
num_frames=inference_state["num_frames"], | |
track_in_reverse=False, | |
run_mem_encoder=False, | |
prev_sam_mask_logits=None, | |
) | |
return current_out["obj_ptr"] | |
def propagate_in_video_preflight(self, inference_state): | |
"""Prepare inference_state and consolidate temporary outputs before tracking.""" | |
# Tracking has started and we don't allow adding new objects until session is reset. | |
inference_state["tracking_has_started"] = True | |
batch_size = self._get_obj_num(inference_state) | |
# Consolidate per-object temporary outputs in "temp_output_dict_per_obj" and | |
# add them into "output_dict". | |
temp_output_dict_per_obj = inference_state["temp_output_dict_per_obj"] | |
output_dict = inference_state["output_dict"] | |
# "consolidated_frame_inds" contains indices of those frames where consolidated | |
# temporary outputs have been added (either in this call or any previous calls | |
# to `propagate_in_video_preflight`). | |
consolidated_frame_inds = inference_state["consolidated_frame_inds"] | |
for is_cond in [False, True]: | |
# Separately consolidate conditioning and non-conditioning temp outptus | |
storage_key = "cond_frame_outputs" if is_cond else "non_cond_frame_outputs" | |
# Find all the frames that contain temporary outputs for any objects | |
# (these should be the frames that have just received clicks for mask inputs | |
# via `add_new_points` or `add_new_mask`) | |
temp_frame_inds = set() | |
for obj_temp_output_dict in temp_output_dict_per_obj.values(): | |
temp_frame_inds.update(obj_temp_output_dict[storage_key].keys()) | |
consolidated_frame_inds[storage_key].update(temp_frame_inds) | |
# consolidate the temprary output across all objects on this frame | |
for frame_idx in temp_frame_inds: | |
consolidated_out = self._consolidate_temp_output_across_obj( | |
inference_state, frame_idx, is_cond=is_cond, run_mem_encoder=True | |
) | |
# merge them into "output_dict" and also create per-object slices | |
output_dict[storage_key][frame_idx] = consolidated_out | |
self._add_output_per_object( | |
inference_state, frame_idx, consolidated_out, storage_key | |
) | |
clear_non_cond_mem = self.clear_non_cond_mem_around_input and ( | |
self.clear_non_cond_mem_for_multi_obj or batch_size <= 1 | |
) | |
if clear_non_cond_mem: | |
# clear non-conditioning memory of the surrounding frames | |
self._clear_non_cond_mem_around_input(inference_state, frame_idx) | |
# clear temporary outputs in `temp_output_dict_per_obj` | |
for obj_temp_output_dict in temp_output_dict_per_obj.values(): | |
obj_temp_output_dict[storage_key].clear() | |
# edge case: if an output is added to "cond_frame_outputs", we remove any prior | |
# output on the same frame in "non_cond_frame_outputs" | |
for frame_idx in output_dict["cond_frame_outputs"]: | |
output_dict["non_cond_frame_outputs"].pop(frame_idx, None) | |
for obj_output_dict in inference_state["output_dict_per_obj"].values(): | |
for frame_idx in obj_output_dict["cond_frame_outputs"]: | |
obj_output_dict["non_cond_frame_outputs"].pop(frame_idx, None) | |
for frame_idx in consolidated_frame_inds["cond_frame_outputs"]: | |
assert frame_idx in output_dict["cond_frame_outputs"] | |
consolidated_frame_inds["non_cond_frame_outputs"].discard(frame_idx) | |
# Make sure that the frame indices in "consolidated_frame_inds" are exactly those frames | |
# with either points or mask inputs (which should be true under a correct workflow). | |
# all_consolidated_frame_inds = ( | |
# consolidated_frame_inds["cond_frame_outputs"] | |
# | consolidated_frame_inds["non_cond_frame_outputs"] | |
# ) | |
# input_frames_inds = set() | |
# for point_inputs_per_frame in inference_state["point_inputs_per_obj"].values(): | |
# input_frames_inds.update(point_inputs_per_frame.keys()) | |
# for mask_inputs_per_frame in inference_state["mask_inputs_per_obj"].values(): | |
# input_frames_inds.update(mask_inputs_per_frame.keys()) | |
# assert all_consolidated_frame_inds == input_frames_inds | |
def propagate_in_video( | |
self, | |
inference_state, | |
start_frame_idx=None, | |
max_frame_num_to_track=None, | |
reverse=False, | |
): | |
"""Propagate the input points across frames to track in the entire video.""" | |
self.propagate_in_video_preflight(inference_state) | |
output_dict = inference_state["output_dict"] | |
consolidated_frame_inds = inference_state["consolidated_frame_inds"] | |
obj_ids = inference_state["obj_ids"] | |
num_frames = inference_state["num_frames"] | |
batch_size = self._get_obj_num(inference_state) | |
if len(output_dict["cond_frame_outputs"]) == 0: | |
raise RuntimeError("No points are provided; please add points first") | |
clear_non_cond_mem = self.clear_non_cond_mem_around_input and ( | |
self.clear_non_cond_mem_for_multi_obj or batch_size <= 1 | |
) | |
# set start index, end index, and processing order | |
if start_frame_idx is None: | |
# default: start from the earliest frame with input points | |
start_frame_idx = min(output_dict["cond_frame_outputs"]) | |
if max_frame_num_to_track is None: | |
# default: track all the frames in the video | |
max_frame_num_to_track = num_frames | |
if reverse: | |
end_frame_idx = max(start_frame_idx - max_frame_num_to_track, 0) | |
if start_frame_idx > 0: | |
processing_order = range(start_frame_idx, end_frame_idx - 1, -1) | |
else: | |
processing_order = [] # skip reverse tracking if starting from frame 0 | |
else: | |
end_frame_idx = min( | |
start_frame_idx + max_frame_num_to_track, num_frames - 1 | |
) | |
processing_order = range(start_frame_idx, end_frame_idx + 1) | |
for frame_idx in tqdm(processing_order, desc="propagate in video"): | |
# We skip those frames already in consolidated outputs (these are frames | |
# that received input clicks or mask). Note that we cannot directly run | |
# batched forward on them via `_run_single_frame_inference` because the | |
# number of clicks on each object might be different. | |
if frame_idx in consolidated_frame_inds["cond_frame_outputs"]: | |
storage_key = "cond_frame_outputs" | |
current_out = output_dict[storage_key][frame_idx] | |
pred_masks = current_out["pred_masks"] | |
if clear_non_cond_mem: | |
# clear non-conditioning memory of the surrounding frames | |
self._clear_non_cond_mem_around_input(inference_state, frame_idx) | |
elif frame_idx in consolidated_frame_inds["non_cond_frame_outputs"]: | |
storage_key = "non_cond_frame_outputs" | |
current_out = output_dict[storage_key][frame_idx] | |
pred_masks = current_out["pred_masks"] | |
else: | |
storage_key = "non_cond_frame_outputs" | |
current_out, pred_masks = self._run_single_frame_inference( | |
inference_state=inference_state, | |
output_dict=output_dict, | |
frame_idx=frame_idx, | |
batch_size=batch_size, | |
is_init_cond_frame=False, | |
point_inputs=None, | |
mask_inputs=None, | |
reverse=reverse, | |
run_mem_encoder=True, | |
) | |
output_dict[storage_key][frame_idx] = current_out | |
# Create slices of per-object outputs for subsequent interaction with each | |
# individual object after tracking. | |
self._add_output_per_object( | |
inference_state, frame_idx, current_out, storage_key | |
) | |
inference_state["frames_already_tracked"][frame_idx] = {"reverse": reverse} | |
# Resize the output mask to the original video resolution (we directly use | |
# the mask scores on GPU for output to avoid any CPU conversion in between) | |
_, video_res_masks = self._get_orig_video_res_output( | |
inference_state, pred_masks | |
) | |
yield frame_idx, obj_ids, video_res_masks | |
def _add_output_per_object( | |
self, inference_state, frame_idx, current_out, storage_key | |
): | |
""" | |
Split a multi-object output into per-object output slices and add them into | |
`output_dict_per_obj`. The resulting slices share the same tensor storage. | |
""" | |
maskmem_features = current_out["maskmem_features"] | |
assert maskmem_features is None or isinstance(maskmem_features, torch.Tensor) | |
maskmem_pos_enc = current_out["maskmem_pos_enc"] | |
assert maskmem_pos_enc is None or isinstance(maskmem_pos_enc, list) | |
output_dict_per_obj = inference_state["output_dict_per_obj"] | |
for obj_idx, obj_output_dict in output_dict_per_obj.items(): | |
obj_slice = slice(obj_idx, obj_idx + 1) | |
obj_out = { | |
"maskmem_features": None, | |
"maskmem_pos_enc": None, | |
"pred_masks": current_out["pred_masks"][obj_slice], | |
"obj_ptr": current_out["obj_ptr"][obj_slice], | |
} | |
if maskmem_features is not None: | |
obj_out["maskmem_features"] = maskmem_features[obj_slice] | |
if maskmem_pos_enc is not None: | |
obj_out["maskmem_pos_enc"] = [x[obj_slice] for x in maskmem_pos_enc] | |
obj_output_dict[storage_key][frame_idx] = obj_out | |
def reset_state(self, inference_state): | |
"""Remove all input points or mask in all frames throughout the video.""" | |
self._reset_tracking_results(inference_state) | |
# Remove all object ids | |
inference_state["obj_id_to_idx"].clear() | |
inference_state["obj_idx_to_id"].clear() | |
inference_state["obj_ids"].clear() | |
inference_state["point_inputs_per_obj"].clear() | |
inference_state["mask_inputs_per_obj"].clear() | |
inference_state["output_dict_per_obj"].clear() | |
inference_state["temp_output_dict_per_obj"].clear() | |
def _reset_tracking_results(self, inference_state): | |
"""Reset all tracking inputs and results across the videos.""" | |
for v in inference_state["point_inputs_per_obj"].values(): | |
v.clear() | |
for v in inference_state["mask_inputs_per_obj"].values(): | |
v.clear() | |
for v in inference_state["output_dict_per_obj"].values(): | |
v["cond_frame_outputs"].clear() | |
v["non_cond_frame_outputs"].clear() | |
for v in inference_state["temp_output_dict_per_obj"].values(): | |
v["cond_frame_outputs"].clear() | |
v["non_cond_frame_outputs"].clear() | |
inference_state["output_dict"]["cond_frame_outputs"].clear() | |
inference_state["output_dict"]["non_cond_frame_outputs"].clear() | |
inference_state["consolidated_frame_inds"]["cond_frame_outputs"].clear() | |
inference_state["consolidated_frame_inds"]["non_cond_frame_outputs"].clear() | |
inference_state["tracking_has_started"] = False | |
inference_state["frames_already_tracked"].clear() | |
def _get_image_feature(self, inference_state, frame_idx, batch_size): | |
"""Compute the image features on a given frame.""" | |
# Look up in the cache first | |
image, backbone_out = inference_state["cached_features"].get( | |
frame_idx, (None, None) | |
) | |
if backbone_out is None: | |
# Cache miss -- we will run inference on a single image | |
image = inference_state["images"][frame_idx].cuda().float().unsqueeze(0) | |
backbone_out = self.forward_image(image) | |
# Cache the most recent frame's feature (for repeated interactions with | |
# a frame; we can use an LRU cache for more frames in the future). | |
inference_state["cached_features"] = {frame_idx: (image, backbone_out)} | |
# expand the features to have the same dimension as the number of objects | |
expanded_image = image.expand(batch_size, -1, -1, -1) | |
expanded_backbone_out = { | |
"backbone_fpn": backbone_out["backbone_fpn"].copy(), | |
"vision_pos_enc": backbone_out["vision_pos_enc"].copy(), | |
} | |
for i, feat in enumerate(expanded_backbone_out["backbone_fpn"]): | |
expanded_backbone_out["backbone_fpn"][i] = feat.expand( | |
batch_size, -1, -1, -1 | |
) | |
for i, pos in enumerate(expanded_backbone_out["vision_pos_enc"]): | |
pos = pos.expand(batch_size, -1, -1, -1) | |
expanded_backbone_out["vision_pos_enc"][i] = pos | |
features = self._prepare_backbone_features(expanded_backbone_out) | |
features = (expanded_image,) + features | |
return features | |
def _run_single_frame_inference( | |
self, | |
inference_state, | |
output_dict, | |
frame_idx, | |
batch_size, | |
is_init_cond_frame, | |
point_inputs, | |
mask_inputs, | |
reverse, | |
run_mem_encoder, | |
prev_sam_mask_logits=None, | |
text_inputs=None | |
): | |
"""Run tracking on a single frame based on current inputs and previous memory.""" | |
# Retrieve correct image features | |
( | |
_, | |
_, | |
current_vision_feats, | |
current_vision_pos_embeds, | |
feat_sizes, | |
) = self._get_image_feature(inference_state, frame_idx, batch_size) | |
# point and mask should not appear as input simultaneously on the same frame | |
assert point_inputs is None or mask_inputs is None | |
current_out = self.track_step( | |
frame_idx=frame_idx, | |
is_init_cond_frame=is_init_cond_frame, | |
current_vision_feats=current_vision_feats, | |
current_vision_pos_embeds=current_vision_pos_embeds, | |
feat_sizes=feat_sizes, | |
point_inputs=point_inputs, | |
mask_inputs=mask_inputs, | |
output_dict=output_dict, | |
num_frames=inference_state["num_frames"], | |
track_in_reverse=reverse, | |
run_mem_encoder=run_mem_encoder, | |
prev_sam_mask_logits=prev_sam_mask_logits, | |
text_inputs=text_inputs | |
) | |
# optionally offload the output to CPU memory to save GPU space | |
storage_device = inference_state["storage_device"] | |
maskmem_features = current_out["maskmem_features"] | |
if maskmem_features is not None: | |
maskmem_features = maskmem_features.to(torch.bfloat16) | |
maskmem_features = maskmem_features.to(storage_device, non_blocking=True) | |
pred_masks_gpu = current_out["pred_masks"] | |
# potentially fill holes in the predicted masks | |
if self.fill_hole_area > 0: | |
pred_masks_gpu = fill_holes_in_mask_scores( | |
pred_masks_gpu, self.fill_hole_area | |
) | |
pred_masks = pred_masks_gpu.to(storage_device, non_blocking=True) | |
# "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it | |
maskmem_pos_enc = self._get_maskmem_pos_enc(inference_state, current_out) | |
# object pointer is a small tensor, so we always keep it on GPU memory for fast access | |
obj_ptr = current_out["obj_ptr"] | |
# make a compact version of this frame's output to reduce the state size | |
compact_current_out = { | |
"maskmem_features": maskmem_features, | |
"maskmem_pos_enc": maskmem_pos_enc, | |
"pred_masks": pred_masks, | |
"obj_ptr": obj_ptr, | |
} | |
return compact_current_out, pred_masks_gpu | |
def _run_memory_encoder( | |
self, inference_state, frame_idx, batch_size, high_res_masks, is_mask_from_pts | |
): | |
""" | |
Run the memory encoder on `high_res_masks`. This is usually after applying | |
non-overlapping constraints to object scores. Since their scores changed, their | |
memory also need to be computed again with the memory encoder. | |
""" | |
# Retrieve correct image features | |
_, _, current_vision_feats, _, feat_sizes = self._get_image_feature( | |
inference_state, frame_idx, batch_size | |
) | |
maskmem_features, maskmem_pos_enc = self._encode_new_memory( | |
current_vision_feats=current_vision_feats, | |
feat_sizes=feat_sizes, | |
pred_masks_high_res=high_res_masks, | |
is_mask_from_pts=is_mask_from_pts, | |
) | |
# optionally offload the output to CPU memory to save GPU space | |
storage_device = inference_state["storage_device"] | |
maskmem_features = maskmem_features.to(torch.bfloat16) | |
maskmem_features = maskmem_features.to(storage_device, non_blocking=True) | |
# "maskmem_pos_enc" is the same across frames, so we only need to store one copy of it | |
maskmem_pos_enc = self._get_maskmem_pos_enc( | |
inference_state, {"maskmem_pos_enc": maskmem_pos_enc} | |
) | |
return maskmem_features, maskmem_pos_enc | |
def _get_maskmem_pos_enc(self, inference_state, current_out): | |
""" | |
`maskmem_pos_enc` is the same across frames and objects, so we cache it as | |
a constant in the inference session to reduce session storage size. | |
""" | |
model_constants = inference_state["constants"] | |
# "out_maskmem_pos_enc" should be either a list of tensors or None | |
out_maskmem_pos_enc = current_out["maskmem_pos_enc"] | |
if out_maskmem_pos_enc is not None: | |
if "maskmem_pos_enc" not in model_constants: | |
assert isinstance(out_maskmem_pos_enc, list) | |
# only take the slice for one object, since it's same across objects | |
maskmem_pos_enc = [x[0:1].clone() for x in out_maskmem_pos_enc] | |
model_constants["maskmem_pos_enc"] = maskmem_pos_enc | |
else: | |
maskmem_pos_enc = model_constants["maskmem_pos_enc"] | |
# expand the cached maskmem_pos_enc to the actual batch size | |
batch_size = out_maskmem_pos_enc[0].size(0) | |
expanded_maskmem_pos_enc = [ | |
x.expand(batch_size, -1, -1, -1) for x in maskmem_pos_enc | |
] | |
else: | |
expanded_maskmem_pos_enc = None | |
return expanded_maskmem_pos_enc | |
def _clear_non_cond_mem_around_input(self, inference_state, frame_idx): | |
""" | |
Remove the non-conditioning memory around the input frame. When users provide | |
correction clicks, the surrounding frames' non-conditioning memories can still | |
contain outdated object appearance information and could confuse the model. | |
This method clears those non-conditioning memories surrounding the interacted | |
frame to avoid giving the model both old and new information about the object. | |
""" | |
r = self.memory_temporal_stride_for_eval | |
frame_idx_begin = frame_idx - r * self.num_maskmem | |
frame_idx_end = frame_idx + r * self.num_maskmem | |
output_dict = inference_state["output_dict"] | |
non_cond_frame_outputs = output_dict["non_cond_frame_outputs"] | |
for t in range(frame_idx_begin, frame_idx_end + 1): | |
non_cond_frame_outputs.pop(t, None) | |
for obj_output_dict in inference_state["output_dict_per_obj"].values(): | |
obj_output_dict["non_cond_frame_outputs"].pop(t, None) | |