File size: 15,139 Bytes
a93afca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
__author__ = "licheng"

"""
This interface provides access to four datasets:
1) refclef
2) refcoco
3) refcoco+
4) refcocog
split by unc and google

The following API functions are defined:
REFER      - REFER api class
getRefIds  - get ref ids that satisfy given filter conditions.
getAnnIds  - get ann ids that satisfy given filter conditions.
getImgIds  - get image ids that satisfy given filter conditions.
getCatIds  - get category ids that satisfy given filter conditions.
loadRefs   - load refs with the specified ref ids.
loadAnns   - load anns with the specified ann ids.
loadImgs   - load images with the specified image ids.
loadCats   - load category names with the specified category ids.
getRefBox  - get ref's bounding box [x, y, w, h] given the ref_id
showRef    - show image, segmentation or box of the referred object with the ref
getMask    - get mask and area of the referred object given ref
showMask   - show mask of the referred object given ref
"""

import itertools
import json
import os.path as osp
import pickle
import sys
import time
from pprint import pprint

import matplotlib.pyplot as plt
import numpy as np
import skimage.io as io
from matplotlib.collections import PatchCollection
from matplotlib.patches import Polygon, Rectangle
from pycocotools import mask


class REFER:
    def __init__(self, data_root, dataset="refcoco", splitBy="unc"):
        # provide data_root folder which contains refclef, refcoco, refcoco+ and refcocog
        # also provide dataset name and splitBy information
        # e.g., dataset = 'refcoco', splitBy = 'unc'
        print("loading dataset %s into memory..." % dataset)
        self.ROOT_DIR = osp.abspath(osp.dirname(__file__))
        self.DATA_DIR = osp.join(data_root, dataset)
        if dataset in ["refcoco", "refcoco+", "refcocog"]:
            self.IMAGE_DIR = osp.join(data_root, "images/mscoco/images/train2014")
        elif dataset == "refclef":
            self.IMAGE_DIR = osp.join(data_root, "images/saiapr_tc-12")
        else:
            print("No refer dataset is called [%s]" % dataset)
            sys.exit()

        self.dataset = dataset

        # load refs from data/dataset/refs(dataset).json
        tic = time.time()

        ref_file = osp.join(self.DATA_DIR, "refs(" + splitBy + ").p")
        print("ref_file: ", ref_file)
        self.data = {}
        self.data["dataset"] = dataset
        self.data["refs"] = pickle.load(open(ref_file, "rb"))

        # load annotations from data/dataset/instances.json
        instances_file = osp.join(self.DATA_DIR, "instances.json")
        instances = json.load(open(instances_file, "rb"))
        self.data["images"] = instances["images"]
        self.data["annotations"] = instances["annotations"]
        self.data["categories"] = instances["categories"]

        # create index
        self.createIndex()
        print("DONE (t=%.2fs)" % (time.time() - tic))

    def createIndex(self):
        # create sets of mapping
        # 1)  Refs: 	 	{ref_id: ref}
        # 2)  Anns: 	 	{ann_id: ann}
        # 3)  Imgs:		 	{image_id: image}
        # 4)  Cats: 	 	{category_id: category_name}
        # 5)  Sents:     	{sent_id: sent}
        # 6)  imgToRefs: 	{image_id: refs}
        # 7)  imgToAnns: 	{image_id: anns}
        # 8)  refToAnn:  	{ref_id: ann}
        # 9)  annToRef:  	{ann_id: ref}
        # 10) catToRefs: 	{category_id: refs}
        # 11) sentToRef: 	{sent_id: ref}
        # 12) sentToTokens: {sent_id: tokens}
        print("creating index...")
        # fetch info from instances
        Anns, Imgs, Cats, imgToAnns = {}, {}, {}, {}
        for ann in self.data["annotations"]:
            Anns[ann["id"]] = ann
            imgToAnns[ann["image_id"]] = imgToAnns.get(ann["image_id"], []) + [ann]
        for img in self.data["images"]:
            Imgs[img["id"]] = img
        for cat in self.data["categories"]:
            Cats[cat["id"]] = cat["name"]

        # fetch info from refs
        Refs, imgToRefs, refToAnn, annToRef, catToRefs = {}, {}, {}, {}, {}
        Sents, sentToRef, sentToTokens = {}, {}, {}
        for ref in self.data["refs"]:
            # ids
            ref_id = ref["ref_id"]
            ann_id = ref["ann_id"]
            category_id = ref["category_id"]
            image_id = ref["image_id"]

            # add mapping related to ref
            Refs[ref_id] = ref
            imgToRefs[image_id] = imgToRefs.get(image_id, []) + [ref]
            catToRefs[category_id] = catToRefs.get(category_id, []) + [ref]
            refToAnn[ref_id] = Anns[ann_id]
            annToRef[ann_id] = ref

            # add mapping of sent
            for sent in ref["sentences"]:
                Sents[sent["sent_id"]] = sent
                sentToRef[sent["sent_id"]] = ref
                sentToTokens[sent["sent_id"]] = sent["tokens"]

        # create class members
        self.Refs = Refs
        self.Anns = Anns
        self.Imgs = Imgs
        self.Cats = Cats
        self.Sents = Sents
        self.imgToRefs = imgToRefs
        self.imgToAnns = imgToAnns
        self.refToAnn = refToAnn
        self.annToRef = annToRef
        self.catToRefs = catToRefs
        self.sentToRef = sentToRef
        self.sentToTokens = sentToTokens
        print("index created.")

    def getRefIds(self, image_ids=[], cat_ids=[], ref_ids=[], split=""):
        image_ids = image_ids if type(image_ids) == list else [image_ids]
        cat_ids = cat_ids if type(cat_ids) == list else [cat_ids]
        ref_ids = ref_ids if type(ref_ids) == list else [ref_ids]

        if len(image_ids) == len(cat_ids) == len(ref_ids) == len(split) == 0:
            refs = self.data["refs"]
        else:
            if not len(image_ids) == 0:
                refs = [self.imgToRefs[image_id] for image_id in image_ids]
            else:
                refs = self.data["refs"]
            if not len(cat_ids) == 0:
                refs = [ref for ref in refs if ref["category_id"] in cat_ids]
            if not len(ref_ids) == 0:
                refs = [ref for ref in refs if ref["ref_id"] in ref_ids]
            if not len(split) == 0:
                if split in ["testA", "testB", "testC"]:
                    refs = [
                        ref for ref in refs if split[-1] in ref["split"]
                    ]  # we also consider testAB, testBC, ...
                elif split in ["testAB", "testBC", "testAC"]:
                    refs = [
                        ref for ref in refs if ref["split"] == split
                    ]  # rarely used I guess...
                elif split == "test":
                    refs = [ref for ref in refs if "test" in ref["split"]]
                elif split == "train" or split == "val":
                    refs = [ref for ref in refs if ref["split"] == split]
                else:
                    print("No such split [%s]" % split)
                    sys.exit()
        ref_ids = [ref["ref_id"] for ref in refs]
        return ref_ids

    def getAnnIds(self, image_ids=[], cat_ids=[], ref_ids=[]):
        image_ids = image_ids if type(image_ids) == list else [image_ids]
        cat_ids = cat_ids if type(cat_ids) == list else [cat_ids]
        ref_ids = ref_ids if type(ref_ids) == list else [ref_ids]

        if len(image_ids) == len(cat_ids) == len(ref_ids) == 0:
            ann_ids = [ann["id"] for ann in self.data["annotations"]]
        else:
            if not len(image_ids) == 0:
                lists = [
                    self.imgToAnns[image_id]
                    for image_id in image_ids
                    if image_id in self.imgToAnns
                ]  # list of [anns]
                anns = list(itertools.chain.from_iterable(lists))
            else:
                anns = self.data["annotations"]
            if not len(cat_ids) == 0:
                anns = [ann for ann in anns if ann["category_id"] in cat_ids]
            ann_ids = [ann["id"] for ann in anns]
            if not len(ref_ids) == 0:
                ids = set(ann_ids).intersection(
                    set([self.Refs[ref_id]["ann_id"] for ref_id in ref_ids])
                )
        return ann_ids

    def getImgIds(self, ref_ids=[]):
        ref_ids = ref_ids if type(ref_ids) == list else [ref_ids]

        if not len(ref_ids) == 0:
            image_ids = list(set([self.Refs[ref_id]["image_id"] for ref_id in ref_ids]))
        else:
            image_ids = self.Imgs.keys()
        return image_ids

    def getCatIds(self):
        return self.Cats.keys()

    def loadRefs(self, ref_ids=[]):
        if type(ref_ids) == list:
            return [self.Refs[ref_id] for ref_id in ref_ids]
        elif type(ref_ids) == int:
            return [self.Refs[ref_ids]]

    def loadAnns(self, ann_ids=[]):
        if type(ann_ids) == list:
            return [self.Anns[ann_id] for ann_id in ann_ids]
        elif type(ann_ids) == int or type(ann_ids) == unicode:
            return [self.Anns[ann_ids]]

    def loadImgs(self, image_ids=[]):
        if type(image_ids) == list:
            return [self.Imgs[image_id] for image_id in image_ids]
        elif type(image_ids) == int:
            return [self.Imgs[image_ids]]

    def loadCats(self, cat_ids=[]):
        if type(cat_ids) == list:
            return [self.Cats[cat_id] for cat_id in cat_ids]
        elif type(cat_ids) == int:
            return [self.Cats[cat_ids]]

    def getRefBox(self, ref_id):
        ref = self.Refs[ref_id]
        ann = self.refToAnn[ref_id]
        return ann["bbox"]  # [x, y, w, h]

    def showRef(self, ref, seg_box="seg"):
        ax = plt.gca()
        # show image
        image = self.Imgs[ref["image_id"]]
        I = io.imread(osp.join(self.IMAGE_DIR, image["file_name"]))
        ax.imshow(I)
        # show refer expression
        for sid, sent in enumerate(ref["sentences"]):
            print("%s. %s" % (sid + 1, sent["sent"]))
        # show segmentations
        if seg_box == "seg":
            ann_id = ref["ann_id"]
            ann = self.Anns[ann_id]
            polygons = []
            color = []
            c = "none"
            if type(ann["segmentation"][0]) == list:
                # polygon used for refcoco*
                for seg in ann["segmentation"]:
                    poly = np.array(seg).reshape((len(seg) / 2, 2))
                    polygons.append(Polygon(poly, True, alpha=0.4))
                    color.append(c)
                p = PatchCollection(
                    polygons,
                    facecolors=color,
                    edgecolors=(1, 1, 0, 0),
                    linewidths=3,
                    alpha=1,
                )
                ax.add_collection(p)  # thick yellow polygon
                p = PatchCollection(
                    polygons,
                    facecolors=color,
                    edgecolors=(1, 0, 0, 0),
                    linewidths=1,
                    alpha=1,
                )
                ax.add_collection(p)  # thin red polygon
            else:
                # mask used for refclef
                rle = ann["segmentation"]
                m = mask.decode(rle)
                img = np.ones((m.shape[0], m.shape[1], 3))
                color_mask = np.array([2.0, 166.0, 101.0]) / 255
                for i in range(3):
                    img[:, :, i] = color_mask[i]
                ax.imshow(np.dstack((img, m * 0.5)))
        # show bounding-box
        elif seg_box == "box":
            ann_id = ref["ann_id"]
            ann = self.Anns[ann_id]
            bbox = self.getRefBox(ref["ref_id"])
            box_plot = Rectangle(
                (bbox[0], bbox[1]),
                bbox[2],
                bbox[3],
                fill=False,
                edgecolor="green",
                linewidth=3,
            )
            ax.add_patch(box_plot)

    def getMask(self, ref):
        # return mask, area and mask-center
        ann = self.refToAnn[ref["ref_id"]]
        image = self.Imgs[ref["image_id"]]
        if type(ann["segmentation"][0]) == list:  # polygon
            rle = mask.frPyObjects(ann["segmentation"], image["height"], image["width"])
        else:
            rle = ann["segmentation"]
        m = mask.decode(rle)
        m = np.sum(
            m, axis=2
        )  # sometimes there are multiple binary map (corresponding to multiple segs)
        m = m.astype(np.uint8)  # convert to np.uint8
        # compute area
        area = sum(mask.area(rle))  # should be close to ann['area']
        return {"mask": m, "area": area}
        # # position
        # position_x = np.mean(np.where(m==1)[1]) # [1] means columns (matlab style) -> x (c style)
        # position_y = np.mean(np.where(m==1)[0]) # [0] means rows (matlab style)    -> y (c style)
        # # mass position (if there were multiple regions, we use the largest one.)
        # label_m = label(m, connectivity=m.ndim)
        # regions = regionprops(label_m)
        # if len(regions) > 0:
        # 	largest_id = np.argmax(np.array([props.filled_area for props in regions]))
        # 	largest_props = regions[largest_id]
        # 	mass_y, mass_x = largest_props.centroid
        # else:
        # 	mass_x, mass_y = position_x, position_y
        # # if centroid is not in mask, we find the closest point to it from mask
        # if m[mass_y, mass_x] != 1:
        # 	print('Finding closes mask point ...')
        # 	kernel = np.ones((10, 10),np.uint8)
        # 	me = cv2.erode(m, kernel, iterations = 1)
        # 	points = zip(np.where(me == 1)[0].tolist(), np.where(me == 1)[1].tolist())  # row, col style
        # 	points = np.array(points)
        # 	dist   = np.sum((points - (mass_y, mass_x))**2, axis=1)
        # 	id     = np.argsort(dist)[0]
        # 	mass_y, mass_x = points[id]
        # 	# return
        # return {'mask': m, 'area': area, 'position_x': position_x, 'position_y': position_y, 'mass_x': mass_x, 'mass_y': mass_y}
        # # show image and mask
        # I = io.imread(osp.join(self.IMAGE_DIR, image['file_name']))
        # plt.figure()
        # plt.imshow(I)
        # ax = plt.gca()
        # img = np.ones( (m.shape[0], m.shape[1], 3) )
        # color_mask = np.array([2.0,166.0,101.0])/255
        # for i in range(3):
        #     img[:,:,i] = color_mask[i]
        # ax.imshow(np.dstack( (img, m*0.5) ))
        # plt.show()

    def showMask(self, ref):
        M = self.getMask(ref)
        msk = M["mask"]
        ax = plt.gca()
        ax.imshow(msk)


if __name__ == "__main__":
    refer = REFER(dataset="refcocog", splitBy="google")
    ref_ids = refer.getRefIds()
    print(len(ref_ids))

    print(len(refer.Imgs))
    print(len(refer.imgToRefs))

    ref_ids = refer.getRefIds(split="train")
    print("There are %s training referred objects." % len(ref_ids))

    for ref_id in ref_ids:
        ref = refer.loadRefs(ref_id)[0]
        if len(ref["sentences"]) < 2:
            continue

        pprint(ref)
        print("The label is %s." % refer.Cats[ref["category_id"]])
        plt.figure()
        refer.showRef(ref, seg_box="box")
        plt.show()

        # plt.figure()
        # refer.showMask(ref)
        # plt.show()