File size: 25,579 Bytes
a93afca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
# --------------------------------------------------------
# Image as a Foreign Language: BEiT Pretraining for Vision and Vision-Language Tasks (https://arxiv.org/abs/2208.10442)
# Github source: https://github.com/microsoft/unilm/tree/master/beit3
# Copyright (c) 2023 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------'

import math
import sys
import json
from typing import Iterable, Optional

import torch
import torch.nn as nn
import torch.nn.functional as F

from timm.utils import ModelEma
from timm.utils import accuracy, ModelEma
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from datasets import get_sentencepiece_model_for_beit3

import utils


class TaskHandler(object):
    def __init__(self) -> None:
        self.metric_logger = None
        self.split = None

    def train_batch(self, model, **kwargs):
        raise NotImplementedError()

    def eval_batch(self, model, **kwargs):
        raise NotImplementedError()

    def before_eval(self, metric_logger, data_loader, **kwargs):
        self.metric_logger = metric_logger
        self.split = data_loader.dataset.split

    def after_eval(self, **kwargs):
        raise NotImplementedError()


class NLVR2Handler(TaskHandler):
    def __init__(self) -> None:
        super().__init__()
        self.criterion = torch.nn.CrossEntropyLoss()

    def train_batch(self, model, image, image2, language_tokens, padding_mask, label):
        logits = model(
            image_a=image, image_b=image2, 
            text_description=language_tokens, 
            padding_mask=padding_mask)
        acc = (logits.max(-1)[-1] == label).float().mean()
        return {
            "loss": self.criterion(input=logits, target=label), 
            "acc": acc, 
        }

    def eval_batch(self, model, image, image2, language_tokens, padding_mask, label):
        logits = model(
            image_a=image, image_b=image2, 
            text_description=language_tokens, 
            padding_mask=padding_mask)
        batch_size = language_tokens.shape[0]
        acc = (logits.max(-1)[-1] == label).float().sum(0) * 100.0 / batch_size
        self.metric_logger.meters['acc'].update(acc.item(), n=batch_size)
    
    def after_eval(self, **kwargs):
        print('* Acc {acc.global_avg:.3f}'.format(acc=self.metric_logger.acc))
        return {k: meter.global_avg for k, meter in self.metric_logger.meters.items()}, "acc"
    

class ImageNetHandler(TaskHandler):
    def __init__(self, args) -> None:
        super().__init__()
        mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
        if mixup_active:
            # smoothing is handled with mixup label transform
            self.criterion = SoftTargetCrossEntropy()
        elif args.label_smoothing > 0.:
            self.criterion = LabelSmoothingCrossEntropy(smoothing=args.label_smoothing)
        else:
            self.criterion = torch.nn.CrossEntropyLoss()

    def train_batch(self, model, image, label):
        logits = model(image=image)
        return {
            "loss": self.criterion(logits, label), 
        }

    def eval_batch(self, model, image, label):
        logits = model(image=image)
        batch_size = image.shape[0]
        acc1, acc5 = accuracy(logits, label, topk=(1, 5))
        self.metric_logger.meters['acc1'].update(acc1.item(), n=batch_size)
        self.metric_logger.meters['acc5'].update(acc5.item(), n=batch_size)
    
    def after_eval(self, **kwargs):
        print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f}'
            .format(top1=self.metric_logger.acc1, top5=self.metric_logger.acc5))
        return {k: meter.global_avg for k, meter in self.metric_logger.meters.items()}, "acc1"


class RetrievalHandler(TaskHandler):
    def __init__(self) -> None:
        super().__init__()
        self.image_feats = []
        self.text_feats = []
        self.image_ids = []
        self.metric_logger = None

    def train_batch(self, model, image, language_tokens, padding_mask, image_id):
        loss, vision_cls, language_cls = model(
            image=image, text_description=language_tokens, padding_mask=padding_mask)
        return {
            "loss": loss, 
        }

    def before_eval(self, metric_logger, **kwargs):
        self.image_feats.clear()
        self.text_feats.clear()
        self.image_ids.clear()
        self.metric_logger = metric_logger

    def eval_batch(self, model, image, language_tokens, padding_mask, image_id):
        vision_cls, _ = model(image=image, only_infer=True)
        _, language_cls = model(
            text_description=language_tokens, padding_mask=padding_mask, only_infer=True)

        self.image_feats.append(vision_cls.clone())
        self.text_feats.append(language_cls.clone())
        self.image_ids.append(image_id.clone())
    
    def after_eval(self, **kwargs):
        image_feats = {}
        for feats, ids in zip(self.image_feats, self.image_ids):
            for i, _idx in enumerate(ids):
                idx = _idx.item()
                if idx not in image_feats:
                    image_feats[idx] = feats[i]
        
        tiids = torch.cat(self.image_ids, dim=0)
        iids = []
        sorted_tensors = []
        for key in sorted(image_feats.keys()):
            sorted_tensors.append(image_feats[key].view(1, -1))
            iids.append(key)

        image_cls_feats = torch.cat(sorted_tensors, dim=0)
        text_cls_feats = torch.cat(self.text_feats, dim=0)

        scores = image_cls_feats @ text_cls_feats.t()
        iids = torch.LongTensor(iids).to(scores.device)

        print("scores: {}".format(scores.size()))
        print("iids: {}".format(iids.size()))
        print("tiids: {}".format(tiids.size()))

        topk10 = scores.topk(10, dim=1)
        topk5 = scores.topk(5, dim=1)
        topk1 = scores.topk(1, dim=1)
        
        topk10_iids = tiids[topk10.indices]
        topk5_iids = tiids[topk5.indices]
        topk1_iids = tiids[topk1.indices]

        tr_r10 = (iids.unsqueeze(1) == topk10_iids).float().max(dim=1)[0].mean()
        tr_r5 = (iids.unsqueeze(1) == topk5_iids).float().max(dim=1)[0].mean()
        tr_r1 = (iids.unsqueeze(1) == topk1_iids).float().max(dim=1)[0].mean()

        topk10 = scores.topk(10, dim=0)
        topk5 = scores.topk(5, dim=0)
        topk1 = scores.topk(1, dim=0)
        topk10_iids = iids[topk10.indices]
        topk5_iids = iids[topk5.indices]
        topk1_iids = iids[topk1.indices]

        ir_r10 = (tiids.unsqueeze(0) == topk10_iids).float().max(dim=0)[0].mean()
        ir_r5 = (tiids.unsqueeze(0) == topk5_iids).float().max(dim=0)[0].mean()
        ir_r1 = (tiids.unsqueeze(0) == topk1_iids).float().max(dim=0)[0].mean()

        eval_result = {
            "tr_r10": tr_r10.item() * 100.0, 
            "tr_r5": tr_r5.item() * 100.0, 
            "tr_r1": tr_r1.item() * 100.0, 
            "ir_r10": ir_r10.item() * 100.0, 
            "ir_r5": ir_r5.item() * 100.0, 
            "ir_r1": ir_r1.item() * 100.0, 
            "average_score": 100.0 * (tr_r1 + tr_r5 + tr_r10 + ir_r1 + ir_r5 + ir_r10).item() / 6.0, 
        }

        print('* Eval result = %s' % json.dumps(eval_result))
        return eval_result, "average_score"


class VQAHandler(TaskHandler):
    def __init__(self) -> None:
        super().__init__()
        self.predictions = []
        self.criterion = nn.BCEWithLogitsLoss(reduction='mean')
        self.label2ans = None

    def train_batch(self, model, image, language_tokens, padding_mask, labels):
        logits = model(
            image=image, question=language_tokens, 
            padding_mask=padding_mask)
        return {
            "loss": self.criterion(input=logits.float(), target=labels.float()) * labels.shape[1], 
        }

    def before_eval(self, metric_logger, data_loader, **kwargs):
        self.predictions.clear()
        self.metric_logger = metric_logger
        self.label2ans = data_loader.dataset.label2ans

    def eval_batch(self, model, image, language_tokens, padding_mask, labels=None, qid=None):
        logits = model(
            image=image, question=language_tokens, 
            padding_mask=padding_mask)
        batch_size = language_tokens.shape[0]
        if labels is not None:
            scores = utils.VQAScore()(logits, labels) * 100.0
            self.metric_logger.meters['score'].update(scores.item(), n=batch_size)
        else:
            _, preds = logits.max(-1)
            for image_id, pred in zip(qid, preds):
                self.predictions.append({
                    "question_id": image_id.item(), 
                    "answer": self.label2ans[pred.item()], 
                })

    def after_eval(self, **kwargs):
        if len(self.predictions) == 0:
            print('* Score {score.global_avg:.3f}'.format(score=self.metric_logger.score))
            return {k: meter.global_avg for k, meter in self.metric_logger.meters.items()}, "score"
        else:
            return self.predictions, "prediction"


class CaptioningHandler(TaskHandler):
    def __init__(self, args) -> None:
        super().__init__()
        self.predictions = []
        self.criterion = utils.BertCaptioningLoss(args.label_smoothing, args.drop_worst_ratio, args.drop_worst_after)
        self.tokenizer = get_sentencepiece_model_for_beit3(args)
        self.num_beams = args.num_beams
        self.max_len = args.num_max_bpe_tokens
        self.length_penalty = args.length_penalty
        self.vocab_size = args.vocab_size

    def train_batch(self, model, image, language_tokens, masked_tokens, language_masked_pos, padding_mask, image_id, global_step):
        logits, _ = model(
            image=image, text_ids=masked_tokens, padding_mask=padding_mask, language_masked_pos=language_masked_pos, image_id=image_id)
        masked_labels = language_tokens[language_masked_pos.bool()]
        score = torch.max(logits, -1)[1].data == masked_labels
        acc = torch.sum(score.float()) / torch.sum(language_masked_pos)
        return {
            "loss": self.criterion(logits, masked_labels, global_step),
            "acc": acc
        }

    def before_eval(self, metric_logger, data_loader, **kwargs):
        self.predictions.clear()
        self.metric_logger = metric_logger

    def eval_batch(self, model, image, image_id=None):
        cur_len = 2
        num_keep_best = 1
        TOPN_PER_BEAM = 3

        batch_size = image.size(0)
        mask_id = self.tokenizer.mask_token_id
        cls_id = self.tokenizer.cls_token_id
        pad_id = self.tokenizer.pad_token_id
        sep_id = self.tokenizer.sep_token_id
        eos_token_ids = [sep_id]

        cls_ids = torch.full(
            (batch_size, 1), cls_id, dtype=torch.long, device=image.device
        )
        mask_ids = torch.full(
            (batch_size, 1), mask_id, dtype=torch.long, device=image.device
        )
        cur_input_ids = torch.cat([cls_ids, mask_ids], dim=1)
        tmp_ids = torch.full(
            (batch_size, self.max_len-1), mask_id, dtype=torch.long, device=image.device
        )
        decoding_results = torch.cat([cls_ids, tmp_ids], dim=1)
        
        # Expand input to num beams
        cur_input_ids = cur_input_ids.unsqueeze(1).expand(batch_size, self.num_beams, cur_len)
        cur_input_ids = cur_input_ids.contiguous().view(batch_size * self.num_beams, cur_len)  # (batch_size * num_beams, cur_len)
        decoding_results = decoding_results.unsqueeze(1).expand(batch_size, self.num_beams, self.max_len)
        decoding_results = decoding_results.contiguous().view(batch_size * self.num_beams, self.max_len)  # (batch_size * num_beams, cur_len)
        image = image.unsqueeze(1).expand(batch_size, self.num_beams, image.size(-3), image.size(-2), image.size(-1))
        image = image.contiguous().view(batch_size * self.num_beams, image.size(-3), image.size(-2), image.size(-1))

        generated_hyps = [
            utils.BeamHypotheses(
                num_keep_best, self.max_len, length_penalty=self.length_penalty, early_stopping=False
            ) for _ in range(batch_size)
        ]
        # scores for each sentence in the beam
        beam_scores = torch.zeros((batch_size, self.num_beams), dtype=torch.float, device=cur_input_ids.device)
        beam_scores[:, 1:] = -1e9
        beam_scores = beam_scores.view(-1)  # shape (batch_size * num_beams,)

        # done sentences
        done = [False for _ in range(batch_size)]
        incremental_state = {}

        while cur_len <= self.max_len:
            next_token_idx = 1
            padding_masks = torch.full(
                cur_input_ids.shape, 0, dtype=torch.long, device=image.device
            )
            input_image = image
            if cur_len != 2:
                input_image = None

            outputs, incremental_state_next = model(
                image=input_image, text_ids=cur_input_ids, language_masked_pos=None,
                padding_mask=padding_masks, text_len=cur_len, incremental_state=incremental_state)
            incremental_state = incremental_state_next

            # assert outputs.shape[1] == token_len
            scores = outputs[:, next_token_idx, :] # (batch_size * num_beams, vocab_size)
            scores = F.log_softmax(scores, dim=-1)  # (batch_size * num_beams, vocab_size)
            assert scores.size() == (batch_size * self.num_beams, self.vocab_size)
            # Add the log prob of the new beams to the log prob of the beginning of the sequence (sum of logs == log of the product)
            _scores = scores + beam_scores[:, None].expand_as(scores)  # (batch_size * num_beams, vocab_size)
            # re-organize to group the beam together (we are keeping top hypothesis accross beams)
            _scores = _scores.view(batch_size, self.num_beams * self.vocab_size)  # (batch_size, num_beams * vocab_size)
            next_scores, next_words = torch.topk(_scores, TOPN_PER_BEAM * self.num_beams, dim=1, largest=True, sorted=True)
            assert next_scores.size() == next_words.size() == (batch_size, TOPN_PER_BEAM * self.num_beams)

            # next batch beam content
            # list of (batch_size * num_beams) tuple(next hypothesis score, next word, current position in the batch)
            next_batch_beam = []
            # for each sentence
            for batch_ex in range(batch_size):
                # if we are done with this sentence
                done[batch_ex] = done[batch_ex] or generated_hyps[batch_ex].is_done(next_scores[batch_ex].max().item())
                if done[batch_ex]:
                    next_batch_beam.extend([(0, pad_id, 0)] * self.num_beams)  # pad the batch
                    continue

                # next sentence beam content
                next_sent_beam = []
                for idx, score in zip(next_words[batch_ex], next_scores[batch_ex]):
                    # get beam and word IDs
                    beam_id = idx // self.vocab_size
                    word_id = idx % self.vocab_size
                    # end of sentence, or next word
                    # if word_id.item() in eos_token_ids or cur_len + 1 == max_len:
                    if (word_id.item() in eos_token_ids and cur_len + 1 <= self.max_len) or (cur_len + 1 == self.max_len):
                        generated_hyps[batch_ex].add(
                            decoding_results[batch_ex * self.num_beams + beam_id, :cur_len].clone(), score.item()
                        )
                    else:
                        next_sent_beam.append((score, word_id, batch_ex * self.num_beams + beam_id))
                    # the beam for next step is full
                    if len(next_sent_beam) == self.num_beams:
                        break

                # update next beam content
                if cur_len + 1 == self.max_len:
                    assert len(next_sent_beam) == 0
                else:
                    assert len(next_sent_beam) == self.num_beams

                if len(next_sent_beam) == 0:
                    next_sent_beam = [(0, pad_id, 0)] * self.num_beams  # pad the batch
                next_batch_beam.extend(next_sent_beam)
                assert len(next_batch_beam) == self.num_beams * (batch_ex + 1)
            
            # sanity check / prepare next batch
            assert len(next_batch_beam) == batch_size * self.num_beams
            beam_scores = beam_scores.new([x[0] for x in next_batch_beam])
            beam_words = cur_input_ids.new([x[1] for x in next_batch_beam])
            beam_idx = cur_input_ids.new([x[2] for x in next_batch_beam])

            # re-order batch
            cur_input_ids = cur_input_ids[beam_idx, :]
            decoding_results = decoding_results[beam_idx, :]
            for module in incremental_state:
                for key in incremental_state[module]:
                    result = incremental_state[module][key].index_select(0, beam_idx)
                    incremental_state[module][key] = result[:,:,:-1,:]
            
            next_ids = torch.full(
                (batch_size * self.num_beams, 1), mask_id, dtype=torch.long, device=image.device
            )
            cur_input_ids = torch.cat([beam_words.unsqueeze(1), next_ids], dim=1)
            decoding_results[:, cur_len-1] = beam_words
            # update current length
            cur_len = cur_len + 1
            # stop when we are done with each sentence
            if all(done):
                break
        
        # select the best hypotheses
        tgt_len = torch.ones(batch_size, num_keep_best, dtype=torch.long)
        logprobs = torch.zeros(batch_size, num_keep_best,
                    dtype=torch.float).fill_(-1e5).to(cur_input_ids.device)
        all_best = []

        for i, hypotheses in enumerate(generated_hyps):
                best = []
                hyp_scores = torch.tensor([x[0] for x in hypotheses.hyp])
                _, best_indices = torch.topk(hyp_scores,
                        min(num_keep_best, len(hyp_scores)), largest=True)
                for best_idx, hyp_idx in enumerate(best_indices):
                    conf, best_hyp = hypotheses.hyp[hyp_idx]
                    best.append(best_hyp)
                    logprobs[i, best_idx] = conf
                    tgt_len[i, best_idx] = len(best_hyp) + 1  # +1 for the <EOS> symbol
                all_best.append(best)
        
        # generate target batch, pad to the same length
        decoded = cur_input_ids.new(batch_size, num_keep_best, self.max_len).fill_(pad_id)
        for batch_idx, best in enumerate(all_best):
            for best_idx, hypo in enumerate(best):
                decoded[batch_idx, best_idx, : tgt_len[batch_idx, best_idx] - 1] = hypo
                decoded[batch_idx, best_idx, tgt_len[batch_idx, best_idx] - 1] = eos_token_ids[0]
        
        captions = self.tokenizer.batch_decode(decoded.squeeze(1), skip_special_tokens=True)
        for qid, pred in zip(image_id, captions):
            self.predictions.append({
                "image_id": qid.item(), 
                "caption": pred, 
            })

    def after_eval(self, **kwargs):
        return self.predictions, "prediction"


def get_handler(args):
    if args.task == "nlvr2":
        return NLVR2Handler()
    elif args.task == "vqav2":
        return VQAHandler()
    elif args.task in ("flickr30k", "coco_retrieval"):
        return RetrievalHandler()
    elif args.task in ("coco_captioning", "nocaps"):
        return CaptioningHandler(args)
    elif args.task in ("imagenet"):
        return ImageNetHandler(args)
    else:
        raise NotImplementedError("Sorry, %s is not support." % args.task)


def train_one_epoch(
        model: torch.nn.Module, data_loader: Iterable, 
        optimizer: torch.optim.Optimizer, device: torch.device, 
        handler: TaskHandler, epoch: int, start_steps: int, 
        lr_schedule_values: list, loss_scaler, max_norm: float = 0, 
        update_freq: int = 1, model_ema: Optional[ModelEma] = None, 
        log_writer: Optional[utils.TensorboardLogger] = None, 
        task = None, mixup_fn=None,
):
    model.train(True)
    metric_logger = utils.MetricLogger(delimiter="  ")
    metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
    metric_logger.add_meter('min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
    header = 'Epoch: [{}]'.format(epoch)
    print_freq = 10

    if loss_scaler is None:
        model.zero_grad()
        model.micro_steps = 0
    else:
        optimizer.zero_grad()

    for data_iter_step, data in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
        step = data_iter_step // update_freq
        global_step = start_steps + step  # global training iteration
        # Update LR & WD for the first acc
        if lr_schedule_values is not None and data_iter_step % update_freq == 0:
            for i, param_group in enumerate(optimizer.param_groups):
                if lr_schedule_values is not None:
                    param_group["lr"] = lr_schedule_values[global_step] * param_group["lr_scale"]
        # put input data into cuda
        for tensor_key in data.keys():
            data[tensor_key] = data[tensor_key].to(device, non_blocking=True)
            # print("input %s = %s" % (tensor_key, data[tensor_key]))
            if loss_scaler is None and tensor_key.startswith("image"):
                data[tensor_key] = data[tensor_key].half()

        # mixup for imagenet finetuning
        if mixup_fn is not None:
            data["image"], data["label"] = mixup_fn(data["image"], data["label"])
        
        if task in ["coco_captioning", "nocaps"]:
            data["global_step"] = global_step

        if loss_scaler is None:
            results = handler.train_batch(model, **data)
        else:
            with torch.cuda.amp.autocast():
                results = handler.train_batch(model, **data)

        loss = results.pop("loss")
        loss_value = loss.item()

        if not math.isfinite(loss_value):
            print("Loss is {}, stopping training".format(loss_value))
            sys.exit(1)

        if loss_scaler is None:
            loss /= update_freq
            model.backward(loss)
            model.step()

            if (data_iter_step + 1) % update_freq == 0:
                # model.zero_grad()
                # Deepspeed will call step() & model.zero_grad() automatic
                if model_ema is not None:
                    model_ema.update(model)
            grad_norm = None
            loss_scale_value = utils.get_loss_scale_for_deepspeed(model)
        else:
            # this attribute is added by timm on one optimizer (adahessian)
            is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
            loss /= update_freq
            grad_norm = loss_scaler(loss, optimizer, clip_grad=max_norm,
                                    parameters=model.parameters(), create_graph=is_second_order,
                                    update_grad=(data_iter_step + 1) % update_freq == 0)
            if (data_iter_step + 1) % update_freq == 0:
                optimizer.zero_grad()
                if model_ema is not None:
                    model_ema.update(model)
            loss_scale_value = loss_scaler.state_dict()["scale"]

        torch.cuda.synchronize()

        metric_logger.update(loss=loss_value)
        metric_logger.update(loss_scale=loss_scale_value)
        min_lr = 10.
        max_lr = 0.
        for group in optimizer.param_groups:
            min_lr = min(min_lr, group["lr"])
            max_lr = max(max_lr, group["lr"])

        metric_logger.update(lr=max_lr)
        metric_logger.update(min_lr=min_lr)
        weight_decay_value = None
        for group in optimizer.param_groups:
            if group["weight_decay"] > 0:
                weight_decay_value = group["weight_decay"]
        metric_logger.update(weight_decay=weight_decay_value)
        metric_logger.update(grad_norm=grad_norm)

        if log_writer is not None:
            kwargs = {
                "loss": loss_value, 
            }
            for key in results:
                kwargs[key] = results[key]
            log_writer.update(head="train", **kwargs)

            kwargs = {
                "loss_scale": loss_scale_value, 
                "lr": max_lr, 
                "min_lr": min_lr, 
                "weight_decay": weight_decay_value, 
                "grad_norm": grad_norm, 
            }
            log_writer.update(head="opt", **kwargs)
            log_writer.set_step()

    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print("Averaged stats:", metric_logger)
    return {k: meter.global_avg for k, meter in metric_logger.meters.items()}


@torch.no_grad()
def evaluate(data_loader, model, device, handler):
    metric_logger = utils.MetricLogger(delimiter="  ")
    header = 'Test:'

    # switch to evaluation mode
    model.eval()
    handler.before_eval(metric_logger=metric_logger, data_loader=data_loader)

    for data in metric_logger.log_every(data_loader, 10, header):
        for tensor_key in data.keys():
            data[tensor_key] = data[tensor_key].to(device, non_blocking=True)

        with torch.cuda.amp.autocast():
            handler.eval_batch(model=model, **data)

    # gather the stats from all processes
    metric_logger.synchronize_between_processes()

    return handler.after_eval()