Spaces:
Runtime error
Runtime error
File size: 12,287 Bytes
5e769e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
from typing import List
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import PreTrainedModel, AutoConfig, AutoModelForCausalLM
from .segment_anything_2.sam2.build_sam import build_sam2, build_sam2_video_predictor
from .unilm.beit3.modeling_utils import BEiT3Wrapper, _get_base_config, _get_large_config
from .configuration_evf import EvfConfig
from .segment_anything_2.sam2.utils.misc import load_video_frames
from collections import OrderedDict
def dice_loss(
inputs: torch.Tensor,
targets: torch.Tensor,
num_masks: float,
scale=1000, # 100000.0,
eps=1e-6,
):
"""
Compute the DICE loss, similar to generalized IOU for masks
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
"""
inputs = inputs.sigmoid()
inputs = inputs.flatten(1, 2)
targets = targets.flatten(1, 2)
numerator = 2 * (inputs / scale * targets).sum(-1)
denominator = (inputs / scale).sum(-1) + (targets / scale).sum(-1)
loss = 1 - (numerator + eps) / (denominator + eps)
loss = loss.sum() / (num_masks + 1e-8)
return loss
def sigmoid_ce_loss(
inputs: torch.Tensor,
targets: torch.Tensor,
num_masks: float,
):
"""
Args:
inputs: A float tensor of arbitrary shape.
The predictions for each example.
targets: A float tensor with the same shape as inputs. Stores the binary
classification label for each element in inputs
(0 for the negative class and 1 for the positive class).
Returns:
Loss tensor
"""
loss = F.binary_cross_entropy_with_logits(inputs,
targets,
reduction="none")
loss = loss.flatten(1, 2).mean(1).sum() / (num_masks + 1e-8)
return loss
class EvfSam2Model(PreTrainedModel):
config_class = EvfConfig
def __init__(self, config, **kwargs):
super(EvfSam2Model, self).__init__(config)
self.config = config
self.vision_pretrained = kwargs.get("vision_pretrained", None)
self.encoder_pretrained = kwargs.get("encoder_pretrained", None)
self.dice_loss_weight = kwargs.get("dice_loss_weight", None)
self.bce_loss_weight = kwargs.get("bce_loss_weight", None)
self.train_mask_decoder = kwargs.get("train_mask_decoder", False)
self.train_prompt_encoder = kwargs.get("train_prompt_encoder", False)
self.initialize_evf_modules(config)
self._bb_feat_sizes = [
(256, 256),
(128, 128),
(64, 64),
]
def initialize_evf_modules(self, config):
# SAM
if config.sam_scale == "large":
self.visual_model = build_sam2_video_predictor(
"sam2_hiera_l.yaml", self.vision_pretrained, device=None)
elif config.sam_scale == "tiny":
self.visual_model = build_sam2_video_predictor(
"sam2_hiera_t.yaml", self.vision_pretrained, device=None)
else:
raise NotImplementedError
for param in self.visual_model.parameters():
param.requires_grad = False
if self.train_mask_decoder:
self.visual_model.sam_mask_decoder.train()
for param in self.visual_model.sam_mask_decoder.parameters():
param.requires_grad = True
if self.train_prompt_encoder:
self.visual_model.sam_prompt_encoder.no_mask_embed.requires_grad_(
True)
# beit-3
if self.config.mm_extractor_scale == "base":
beit_config = _get_base_config()
elif self.config.mm_extractor_scale == "large":
beit_config = _get_large_config()
else:
raise AttributeError(
f"model config should contain key 'mm_extractor_scale', with value 'base' or 'large'."
)
self.mm_extractor = BEiT3Wrapper(beit_config)
if self.encoder_pretrained is not None:
beit_state_dict = torch.load(self.encoder_pretrained)["model"]
self.mm_extractor.load_state_dict(beit_state_dict, strict=False)
for param in self.mm_extractor.parameters():
param.requires_grad = True
# Projection layer
in_dim = config.hidden_size
assert in_dim==beit_config.encoder_embed_dim, \
f"projection layer dim {in_dim} mismatch with mm_extractor dim {beit_config.encoder_embed_dim}"
out_dim = config.out_dim
text_fc = [
nn.Linear(in_dim, in_dim),
nn.ReLU(),
nn.Linear(in_dim, out_dim)
]
self.text_hidden_fcs = nn.ModuleList([nn.Sequential(*text_fc)])
self.text_hidden_fcs.train()
for param in self.text_hidden_fcs.parameters():
param.requires_grad = True
def postprocess_masks(self, masks: torch.Tensor, orig_hw) -> torch.Tensor:
"""
Perform PostProcessing on output masks.
"""
masks = masks.float()
masks = F.interpolate(masks,
orig_hw,
mode="bilinear",
align_corners=False)
return masks
# def forward(
# self,
# images: torch.FloatTensor,
# images_evf: torch.FloatTensor,
# input_ids: torch.LongTensor,
# attention_masks: torch.LongTensor,
# offset: torch.LongTensor,
# masks_list: List[torch.FloatTensor],
# label_list: List[torch.Tensor],
# resize_list: List[tuple],
# inference: bool = False,
# **kwargs,
# ):
# # image_embeddings = self.get_visual_embs(images)
# backbone_out = self.visual_model.forward_image(images)
# # dict_keys(['vision_features', 'vision_pos_enc', 'backbone_fpn'])
# _, image_embeddings, _, _ = self.visual_model._prepare_backbone_features(backbone_out)
# image_embeddings = [_.to(images.dtype) for _ in image_embeddings]
# batch_size = images.shape[0]
# if self.visual_model.directly_add_no_mem_embed:
# image_embeddings[-1] = image_embeddings[-1] + self.visual_model.no_mem_embed
# feats = [
# feat.permute(1, 2, 0).view(batch_size, -1, *feat_size)
# for feat, feat_size in zip(image_embeddings[::-1], self._bb_feat_sizes[::-1])
# ][::-1]
# _features = {"image_embed": feats[-1], "high_res_feats": feats[:-1]}
# assert batch_size == len(offset) - 1
# images_evf_list = []
# for i in range(len(offset) - 1):
# start_i, end_i = offset[i], offset[i + 1]
# images_evf_i = (
# images_evf[i]
# .unsqueeze(0)
# .expand(end_i - start_i, -1, -1, -1)
# .contiguous()
# )
# images_evf_list.append(images_evf_i)
# images_evf = torch.cat(images_evf_list, dim=0)
# multimask_output = False
# output = self.mm_extractor.beit3(
# visual_tokens=images_evf,
# textual_tokens=input_ids,
# text_padding_position=~attention_masks
# )
# feat = output["encoder_out"][:, :1, ...]
# feat = self.text_hidden_fcs[0](feat)
# feat = torch.split(feat, [offset[i+1] - offset[i] for i in range(len(offset)-1)])
# pred_masks = []
# for i in range(len(feat)):
# (
# sparse_embeddings,
# dense_embeddings,
# ) = self.visual_model.sam_prompt_encoder(
# points=None,
# boxes=None,
# masks=None,
# text_embeds=feat[i],
# )
# sparse_embeddings = sparse_embeddings.to(feat[i].dtype)
# high_res_features = [
# feat_level[i].unsqueeze(0)
# for feat_level in _features["high_res_feats"]
# ]
# low_res_masks, iou_predictions, _, _ = self.visual_model.sam_mask_decoder(
# image_embeddings=_features["image_embed"][i].unsqueeze(0),
# image_pe=self.visual_model.sam_prompt_encoder.get_dense_pe(),
# sparse_prompt_embeddings=sparse_embeddings,
# dense_prompt_embeddings=dense_embeddings,
# multimask_output=multimask_output,
# repeat_image = True,
# high_res_features=high_res_features,
# )
# if multimask_output:
# sorted_ids = torch.argsort(iou_predictions, dim=-1, descending=True)
# low_res_masks = torch.take_along_dim(low_res_masks, sorted_ids[..., None, None], dim=1)[:, :1]
# pred_mask = self.postprocess_masks(
# low_res_masks,
# orig_hw=label_list[i].shape,
# )
# pred_masks.append(pred_mask[:, 0])
# gt_masks = masks_list
# if inference:
# return {
# "pred_masks": pred_masks,
# "gt_masks": gt_masks,
# }
# mask_bce_loss = 0
# mask_dice_loss = 0
# num_masks = 0
# for batch_idx in range(len(pred_masks)):
# gt_mask = gt_masks[batch_idx]
# pred_mask = pred_masks[batch_idx]
# assert (
# gt_mask.shape[0] == pred_mask.shape[0]
# ), "gt_mask.shape: {}, pred_mask.shape: {}".format(
# gt_mask.shape, pred_mask.shape
# )
# mask_bce_loss += (
# sigmoid_ce_loss(pred_mask, gt_mask, num_masks=gt_mask.shape[0])
# * gt_mask.shape[0]
# )
# mask_dice_loss += (
# dice_loss(pred_mask, gt_mask, num_masks=gt_mask.shape[0])
# * gt_mask.shape[0]
# )
# num_masks += gt_mask.shape[0]
# mask_bce_loss = self.bce_loss_weight * mask_bce_loss / (num_masks + 1e-8)
# mask_dice_loss = self.dice_loss_weight * mask_dice_loss / (num_masks + 1e-8)
# mask_loss = mask_bce_loss + mask_dice_loss
# loss = mask_loss
# return {
# "loss": loss,
# "mask_bce_loss": mask_bce_loss,
# "mask_dice_loss": mask_dice_loss,
# "mask_loss": mask_loss,
# }
def inference(
self,
video_path,
images_evf,
input_ids,
# original_size_list,
multimask_output=False,
):
predictor = self.visual_model
inference_state = predictor.init_state(video_path=video_path)
predictor.reset_state(inference_state)
multimask_output = multimask_output
output = self.mm_extractor.beit3(
visual_tokens=images_evf,
textual_tokens=input_ids,
text_padding_position=torch.zeros_like(input_ids))
feat = output["encoder_out"][:, :1, ...]
feat = self.text_hidden_fcs[0](feat)
ann_frame_idx = 0 # the frame index we interact with
ann_obj_id = 1 # give a unique id to each object we interact with (it can be any integers)
_, out_obj_ids, out_mask_logits = predictor.add_new_text(
inference_state=inference_state,
frame_idx=ann_frame_idx,
obj_id=ann_obj_id,
text=feat)
# run propagation throughout the video and collect the results in a dict
video_segments = {
} # video_segments contains the per-frame segmentation results
for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(
inference_state):
video_segments[out_frame_idx] = {
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
for i, out_obj_id in enumerate(out_obj_ids)
}
return video_segments
AutoConfig.register("evf", EvfConfig)
AutoModelForCausalLM.register(EvfConfig, EvfSam2Model)
|