File size: 7,700 Bytes
a93afca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import math
from typing import List, Optional, Tuple, Type

import torch
import torch.nn as nn
import torch.nn.functional as F


class LayerNorm2d(nn.Module):
    def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
        super().__init__()
        self.weight = nn.Parameter(torch.ones(num_channels))
        self.bias = nn.Parameter(torch.zeros(num_channels))
        self.eps = eps

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        u = x.mean(1, keepdim=True)
        s = (x - u).pow(2).mean(1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.eps)
        x = self.weight[:, None, None] * x + self.bias[:, None, None]
        return x


class PatchEmbed(nn.Module):
    """2D Image to Patch Embedding"""

    def __init__(
        self,
        img_size,
        patch_size,
        in_chans,
        embed_dim,
    ):
        super().__init__()
        self.proj = nn.Conv2d(
            in_chans,
            embed_dim,
            kernel_size=(patch_size, patch_size),
            stride=(patch_size, patch_size),
            bias=True,
        )

    def forward(self, x):
        B, C, H, W = x.shape
        x = self.proj(x)
        return x


class Attention(nn.Module):
    def __init__(
        self,
        dim,
        num_heads,
        qkv_bias,
        qk_scale=None,
    ):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim**-0.5
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.proj = nn.Linear(dim, dim)

    def forward(self, x):
        B, N, C = x.shape
        qkv = (
            self.qkv(x)
            .reshape(B, N, 3, self.num_heads, C // self.num_heads)
            .permute(2, 0, 3, 1, 4)
        )
        q, k, v = (
            qkv[0],
            qkv[1],
            qkv[2],
        )
        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        return x


class Mlp(nn.Module):
    def __init__(
        self,
        in_features,
        hidden_features=None,
        out_features=None,
        act_layer=nn.GELU,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.fc2(x)
        return x


class Block(nn.Module):
    def __init__(
        self,
        dim,
        num_heads,
        mlp_ratio=4.0,
        qkv_bias=False,
        qk_scale=None,
        act_layer=nn.GELU,
    ):
        super().__init__()
        self.norm1 = nn.LayerNorm(dim, eps=1e-6)
        self.attn = Attention(
            dim,
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            qk_scale=qk_scale,
        )
        self.norm2 = nn.LayerNorm(dim, eps=1e-6)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(
            in_features=dim,
            hidden_features=mlp_hidden_dim,
            act_layer=act_layer,
        )

    def forward(self, x):
        x = x + self.attn(self.norm1(x))
        x = x + self.mlp(self.norm2(x))
        return x


@torch.jit.export
def get_abs_pos(
    abs_pos: torch.Tensor, has_cls_token: bool, hw: List[int]
) -> torch.Tensor:
    """
    Calculate absolute positional embeddings. If needed, resize embeddings and remove cls_token
        dimension for the original embeddings.
    Args:
        abs_pos (Tensor): absolute positional embeddings with (1, num_position, C).
        has_cls_token (bool): If true, has 1 embedding in abs_pos for cls token.
        hw (Tuple): size of input image tokens.

    Returns:
        Absolute positional embeddings after processing with shape (1, H, W, C)
    """
    h = hw[0]
    w = hw[1]
    if has_cls_token:
        abs_pos = abs_pos[:, 1:]
    xy_num = abs_pos.shape[1]
    size = int(math.sqrt(xy_num))
    assert size * size == xy_num

    if size != h or size != w:
        new_abs_pos = F.interpolate(
            abs_pos.reshape(1, size, size, -1).permute(0, 3, 1, 2),
            size=(h, w),
            mode="bicubic",
            align_corners=False,
        )
        return new_abs_pos.permute(0, 2, 3, 1)
    else:
        return abs_pos.reshape(1, h, w, -1)


# Image encoder for efficient SAM.
class ImageEncoderViT(nn.Module):
    def __init__(
        self,
        img_size: int,
        patch_size: int,
        in_chans: int,
        patch_embed_dim: int,
        normalization_type: str,
        depth: int,
        num_heads: int,
        mlp_ratio: float,
        neck_dims: List[int],
        act_layer: Type[nn.Module],
    ) -> None:
        """
        Args:
            img_size (int): Input image size.
            patch_size (int): Patch size.
            in_chans (int): Number of input image channels.
            patch_embed_dim (int): Patch embedding dimension.
            depth (int): Depth of ViT.
            num_heads (int): Number of attention heads in each ViT block.
            mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
            act_layer (nn.Module): Activation layer.
        """
        super().__init__()

        self.img_size = img_size
        self.image_embedding_size = img_size // ((patch_size if patch_size > 0 else 1))
        self.transformer_output_dim = ([patch_embed_dim] + neck_dims)[-1]
        self.pretrain_use_cls_token = True
        pretrain_img_size = 224
        self.patch_embed = PatchEmbed(img_size, patch_size, in_chans, patch_embed_dim)
        # Initialize absolute positional embedding with pretrain image size.
        num_patches = (pretrain_img_size // patch_size) * (
            pretrain_img_size // patch_size
        )
        num_positions = num_patches + 1
        self.pos_embed = nn.Parameter(torch.zeros(1, num_positions, patch_embed_dim))
        self.blocks = nn.ModuleList()
        for i in range(depth):
            vit_block = Block(patch_embed_dim, num_heads, mlp_ratio, True)
            self.blocks.append(vit_block)
        self.neck = nn.Sequential(
            nn.Conv2d(
                patch_embed_dim,
                neck_dims[0],
                kernel_size=1,
                bias=False,
            ),
            LayerNorm2d(neck_dims[0]),
            nn.Conv2d(
                neck_dims[0],
                neck_dims[0],
                kernel_size=3,
                padding=1,
                bias=False,
            ),
            LayerNorm2d(neck_dims[0]),
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        assert (
            x.shape[2] == self.img_size and x.shape[3] == self.img_size
        ), "input image size must match self.img_size"
        x = self.patch_embed(x)
        # B C H W -> B H W C
        x = x.permute(0, 2, 3, 1)
        x = x + get_abs_pos(
            self.pos_embed, self.pretrain_use_cls_token, [x.shape[1], x.shape[2]]
        )
        num_patches = x.shape[1]
        assert x.shape[2] == num_patches
        x = x.reshape(x.shape[0], num_patches * num_patches, x.shape[3])
        for blk in self.blocks:
            x = blk(x)
        x = x.reshape(x.shape[0], num_patches, num_patches, x.shape[2])
        x = self.neck(x.permute(0, 3, 1, 2))
        return x