Spaces:
Runtime error
Runtime error
from ..models import ModelManager, SDXLTextEncoder, SDXLTextEncoder2, SDXLUNet, SDXLVAEDecoder, SDXLVAEEncoder, SDXLMotionModel | |
from .dancer import lets_dance_xl | |
# TODO: SDXL ControlNet | |
from ..prompts import SDXLPrompter | |
from ..schedulers import EnhancedDDIMScheduler | |
import torch | |
from tqdm import tqdm | |
from PIL import Image | |
import numpy as np | |
class SDXLVideoPipeline(torch.nn.Module): | |
def __init__(self, device="cuda", torch_dtype=torch.float16, use_animatediff=True): | |
super().__init__() | |
self.scheduler = EnhancedDDIMScheduler(beta_schedule="linear" if use_animatediff else "scaled_linear") | |
self.prompter = SDXLPrompter() | |
self.device = device | |
self.torch_dtype = torch_dtype | |
# models | |
self.text_encoder: SDXLTextEncoder = None | |
self.text_encoder_2: SDXLTextEncoder2 = None | |
self.unet: SDXLUNet = None | |
self.vae_decoder: SDXLVAEDecoder = None | |
self.vae_encoder: SDXLVAEEncoder = None | |
# TODO: SDXL ControlNet | |
self.motion_modules: SDXLMotionModel = None | |
def fetch_main_models(self, model_manager: ModelManager): | |
self.text_encoder = model_manager.text_encoder | |
self.text_encoder_2 = model_manager.text_encoder_2 | |
self.unet = model_manager.unet | |
self.vae_decoder = model_manager.vae_decoder | |
self.vae_encoder = model_manager.vae_encoder | |
def fetch_controlnet_models(self, model_manager: ModelManager, **kwargs): | |
# TODO: SDXL ControlNet | |
pass | |
def fetch_motion_modules(self, model_manager: ModelManager): | |
if "motion_modules_xl" in model_manager.model: | |
self.motion_modules = model_manager.motion_modules_xl | |
def fetch_prompter(self, model_manager: ModelManager): | |
self.prompter.load_from_model_manager(model_manager) | |
def from_model_manager(model_manager: ModelManager, controlnet_config_units = [], **kwargs): | |
pipe = SDXLVideoPipeline( | |
device=model_manager.device, | |
torch_dtype=model_manager.torch_dtype, | |
use_animatediff="motion_modules_xl" in model_manager.model | |
) | |
pipe.fetch_main_models(model_manager) | |
pipe.fetch_motion_modules(model_manager) | |
pipe.fetch_prompter(model_manager) | |
pipe.fetch_controlnet_models(model_manager, controlnet_config_units=controlnet_config_units) | |
return pipe | |
def preprocess_image(self, image): | |
image = torch.Tensor(np.array(image, dtype=np.float32) * (2 / 255) - 1).permute(2, 0, 1).unsqueeze(0) | |
return image | |
def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32): | |
image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)[0] | |
image = image.cpu().permute(1, 2, 0).numpy() | |
image = Image.fromarray(((image / 2 + 0.5).clip(0, 1) * 255).astype("uint8")) | |
return image | |
def decode_images(self, latents, tiled=False, tile_size=64, tile_stride=32): | |
images = [ | |
self.decode_image(latents[frame_id: frame_id+1], tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
for frame_id in range(latents.shape[0]) | |
] | |
return images | |
def encode_images(self, processed_images, tiled=False, tile_size=64, tile_stride=32): | |
latents = [] | |
for image in processed_images: | |
image = self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype) | |
latent = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).cpu() | |
latents.append(latent) | |
latents = torch.concat(latents, dim=0) | |
return latents | |
def __call__( | |
self, | |
prompt, | |
negative_prompt="", | |
cfg_scale=7.5, | |
clip_skip=1, | |
clip_skip_2=2, | |
num_frames=None, | |
input_frames=None, | |
controlnet_frames=None, | |
denoising_strength=1.0, | |
height=512, | |
width=512, | |
num_inference_steps=20, | |
animatediff_batch_size = 16, | |
animatediff_stride = 8, | |
unet_batch_size = 1, | |
controlnet_batch_size = 1, | |
cross_frame_attention = False, | |
smoother=None, | |
smoother_progress_ids=[], | |
vram_limit_level=0, | |
progress_bar_cmd=tqdm, | |
progress_bar_st=None, | |
): | |
# Prepare scheduler | |
self.scheduler.set_timesteps(num_inference_steps, denoising_strength) | |
# Prepare latent tensors | |
if self.motion_modules is None: | |
noise = torch.randn((1, 4, height//8, width//8), device="cpu", dtype=self.torch_dtype).repeat(num_frames, 1, 1, 1) | |
else: | |
noise = torch.randn((num_frames, 4, height//8, width//8), device="cuda", dtype=self.torch_dtype) | |
if input_frames is None or denoising_strength == 1.0: | |
latents = noise | |
else: | |
latents = self.encode_images(input_frames) | |
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0]) | |
# Encode prompts | |
add_prompt_emb_posi, prompt_emb_posi = self.prompter.encode_prompt( | |
self.text_encoder, | |
self.text_encoder_2, | |
prompt, | |
clip_skip=clip_skip, clip_skip_2=clip_skip_2, | |
device=self.device, | |
positive=True, | |
) | |
if cfg_scale != 1.0: | |
add_prompt_emb_nega, prompt_emb_nega = self.prompter.encode_prompt( | |
self.text_encoder, | |
self.text_encoder_2, | |
negative_prompt, | |
clip_skip=clip_skip, clip_skip_2=clip_skip_2, | |
device=self.device, | |
positive=False, | |
) | |
# Prepare positional id | |
add_time_id = torch.tensor([height, width, 0, 0, height, width], device=self.device) | |
# Denoise | |
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): | |
timestep = torch.IntTensor((timestep,))[0].to(self.device) | |
# Classifier-free guidance | |
noise_pred_posi = lets_dance_xl( | |
self.unet, motion_modules=self.motion_modules, controlnet=None, | |
sample=latents, add_time_id=add_time_id, add_text_embeds=add_prompt_emb_posi, | |
timestep=timestep, encoder_hidden_states=prompt_emb_posi, controlnet_frames=controlnet_frames, | |
cross_frame_attention=cross_frame_attention, | |
device=self.device, vram_limit_level=vram_limit_level | |
) | |
if cfg_scale != 1.0: | |
noise_pred_nega = lets_dance_xl( | |
self.unet, motion_modules=self.motion_modules, controlnet=None, | |
sample=latents, add_time_id=add_time_id, add_text_embeds=add_prompt_emb_nega, | |
timestep=timestep, encoder_hidden_states=prompt_emb_nega, controlnet_frames=controlnet_frames, | |
cross_frame_attention=cross_frame_attention, | |
device=self.device, vram_limit_level=vram_limit_level | |
) | |
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) | |
else: | |
noise_pred = noise_pred_posi | |
latents = self.scheduler.step(noise_pred, timestep, latents) | |
if progress_bar_st is not None: | |
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) | |
# Decode image | |
image = self.decode_images(latents.to(torch.float32)) | |
return image | |