Spaces:
Runtime error
Runtime error
from ..models import ModelManager, SDTextEncoder, SDUNet, SDVAEDecoder, SDVAEEncoder, SDMotionModel | |
from ..controlnets import MultiControlNetManager, ControlNetUnit, ControlNetConfigUnit, Annotator | |
from ..prompts import SDPrompter | |
from ..schedulers import EnhancedDDIMScheduler | |
from ..data import VideoData, save_frames, save_video | |
from .dancer import lets_dance | |
from ..processors.sequencial_processor import SequencialProcessor | |
from typing import List | |
import torch, os, json | |
from tqdm import tqdm | |
from PIL import Image | |
import numpy as np | |
def lets_dance_with_long_video( | |
unet: SDUNet, | |
motion_modules: SDMotionModel = None, | |
controlnet: MultiControlNetManager = None, | |
sample = None, | |
timestep = None, | |
encoder_hidden_states = None, | |
controlnet_frames = None, | |
animatediff_batch_size = 16, | |
animatediff_stride = 8, | |
unet_batch_size = 1, | |
controlnet_batch_size = 1, | |
cross_frame_attention = False, | |
device = "cuda", | |
vram_limit_level = 0, | |
): | |
num_frames = sample.shape[0] | |
hidden_states_output = [(torch.zeros(sample[0].shape, dtype=sample[0].dtype), 0) for i in range(num_frames)] | |
for batch_id in range(0, num_frames, animatediff_stride): | |
batch_id_ = min(batch_id + animatediff_batch_size, num_frames) | |
# process this batch | |
hidden_states_batch = lets_dance( | |
unet, motion_modules, controlnet, | |
sample[batch_id: batch_id_].to(device), | |
timestep, | |
encoder_hidden_states[batch_id: batch_id_].to(device), | |
controlnet_frames=controlnet_frames[:, batch_id: batch_id_].to(device) if controlnet_frames is not None else None, | |
unet_batch_size=unet_batch_size, controlnet_batch_size=controlnet_batch_size, | |
cross_frame_attention=cross_frame_attention, | |
device=device, vram_limit_level=vram_limit_level | |
).cpu() | |
# update hidden_states | |
for i, hidden_states_updated in zip(range(batch_id, batch_id_), hidden_states_batch): | |
bias = max(1 - abs(i - (batch_id + batch_id_ - 1) / 2) / ((batch_id_ - batch_id - 1 + 1e-2) / 2), 1e-2) | |
hidden_states, num = hidden_states_output[i] | |
hidden_states = hidden_states * (num / (num + bias)) + hidden_states_updated * (bias / (num + bias)) | |
hidden_states_output[i] = (hidden_states, num + bias) | |
if batch_id_ == num_frames: | |
break | |
# output | |
hidden_states = torch.stack([h for h, _ in hidden_states_output]) | |
return hidden_states | |
class SDVideoPipeline(torch.nn.Module): | |
def __init__(self, device="cuda", torch_dtype=torch.float16, use_animatediff=True): | |
super().__init__() | |
self.scheduler = EnhancedDDIMScheduler(beta_schedule="linear" if use_animatediff else "scaled_linear") | |
self.prompter = SDPrompter() | |
self.device = device | |
self.torch_dtype = torch_dtype | |
# models | |
self.text_encoder: SDTextEncoder = None | |
self.unet: SDUNet = None | |
self.vae_decoder: SDVAEDecoder = None | |
self.vae_encoder: SDVAEEncoder = None | |
self.controlnet: MultiControlNetManager = None | |
self.motion_modules: SDMotionModel = None | |
def fetch_main_models(self, model_manager: ModelManager): | |
self.text_encoder = model_manager.text_encoder | |
self.unet = model_manager.unet | |
self.vae_decoder = model_manager.vae_decoder | |
self.vae_encoder = model_manager.vae_encoder | |
def fetch_controlnet_models(self, model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[]): | |
controlnet_units = [] | |
for config in controlnet_config_units: | |
controlnet_unit = ControlNetUnit( | |
Annotator(config.processor_id, device=self.device), | |
model_manager.get_model_with_model_path(config.model_path), | |
config.scale | |
) | |
controlnet_units.append(controlnet_unit) | |
self.controlnet = MultiControlNetManager(controlnet_units) | |
def fetch_motion_modules(self, model_manager: ModelManager): | |
if "motion_modules" in model_manager.model: | |
self.motion_modules = model_manager.motion_modules | |
def fetch_prompter(self, model_manager: ModelManager): | |
self.prompter.load_from_model_manager(model_manager) | |
def from_model_manager(model_manager: ModelManager, controlnet_config_units: List[ControlNetConfigUnit]=[]): | |
pipe = SDVideoPipeline( | |
device=model_manager.device, | |
torch_dtype=model_manager.torch_dtype, | |
use_animatediff="motion_modules" in model_manager.model | |
) | |
pipe.fetch_main_models(model_manager) | |
pipe.fetch_motion_modules(model_manager) | |
pipe.fetch_prompter(model_manager) | |
pipe.fetch_controlnet_models(model_manager, controlnet_config_units) | |
return pipe | |
def preprocess_image(self, image): | |
image = torch.Tensor(np.array(image, dtype=np.float32) * (2 / 255) - 1).permute(2, 0, 1).unsqueeze(0) | |
return image | |
def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32): | |
image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)[0] | |
image = image.cpu().permute(1, 2, 0).numpy() | |
image = Image.fromarray(((image / 2 + 0.5).clip(0, 1) * 255).astype("uint8")) | |
return image | |
def decode_images(self, latents, tiled=False, tile_size=64, tile_stride=32): | |
images = [ | |
self.decode_image(latents[frame_id: frame_id+1], tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
for frame_id in range(latents.shape[0]) | |
] | |
return images | |
def encode_images(self, processed_images, tiled=False, tile_size=64, tile_stride=32): | |
latents = [] | |
for image in processed_images: | |
image = self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype) | |
latent = self.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride).cpu() | |
latents.append(latent) | |
latents = torch.concat(latents, dim=0) | |
return latents | |
def __call__( | |
self, | |
prompt, | |
negative_prompt="", | |
cfg_scale=7.5, | |
clip_skip=1, | |
num_frames=None, | |
input_frames=None, | |
controlnet_frames=None, | |
denoising_strength=1.0, | |
height=512, | |
width=512, | |
num_inference_steps=20, | |
animatediff_batch_size = 16, | |
animatediff_stride = 8, | |
unet_batch_size = 1, | |
controlnet_batch_size = 1, | |
cross_frame_attention = False, | |
smoother=None, | |
smoother_progress_ids=[], | |
vram_limit_level=0, | |
progress_bar_cmd=tqdm, | |
progress_bar_st=None, | |
): | |
# Prepare scheduler | |
self.scheduler.set_timesteps(num_inference_steps, denoising_strength) | |
# Prepare latent tensors | |
if self.motion_modules is None: | |
noise = torch.randn((1, 4, height//8, width//8), device="cpu", dtype=self.torch_dtype).repeat(num_frames, 1, 1, 1) | |
else: | |
noise = torch.randn((num_frames, 4, height//8, width//8), device="cpu", dtype=self.torch_dtype) | |
if input_frames is None or denoising_strength == 1.0: | |
latents = noise | |
else: | |
latents = self.encode_images(input_frames) | |
latents = self.scheduler.add_noise(latents, noise, timestep=self.scheduler.timesteps[0]) | |
# Encode prompts | |
prompt_emb_posi = self.prompter.encode_prompt(self.text_encoder, prompt, clip_skip=clip_skip, device=self.device, positive=True).cpu() | |
prompt_emb_nega = self.prompter.encode_prompt(self.text_encoder, negative_prompt, clip_skip=clip_skip, device=self.device, positive=False).cpu() | |
prompt_emb_posi = prompt_emb_posi.repeat(num_frames, 1, 1) | |
prompt_emb_nega = prompt_emb_nega.repeat(num_frames, 1, 1) | |
# Prepare ControlNets | |
if controlnet_frames is not None: | |
if isinstance(controlnet_frames[0], list): | |
controlnet_frames_ = [] | |
for processor_id in range(len(controlnet_frames)): | |
controlnet_frames_.append( | |
torch.stack([ | |
self.controlnet.process_image(controlnet_frame, processor_id=processor_id).to(self.torch_dtype) | |
for controlnet_frame in progress_bar_cmd(controlnet_frames[processor_id]) | |
], dim=1) | |
) | |
controlnet_frames = torch.concat(controlnet_frames_, dim=0) | |
else: | |
controlnet_frames = torch.stack([ | |
self.controlnet.process_image(controlnet_frame).to(self.torch_dtype) | |
for controlnet_frame in progress_bar_cmd(controlnet_frames) | |
], dim=1) | |
# Denoise | |
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): | |
timestep = torch.IntTensor((timestep,))[0].to(self.device) | |
# Classifier-free guidance | |
noise_pred_posi = lets_dance_with_long_video( | |
self.unet, motion_modules=self.motion_modules, controlnet=self.controlnet, | |
sample=latents, timestep=timestep, encoder_hidden_states=prompt_emb_posi, controlnet_frames=controlnet_frames, | |
animatediff_batch_size=animatediff_batch_size, animatediff_stride=animatediff_stride, | |
unet_batch_size=unet_batch_size, controlnet_batch_size=controlnet_batch_size, | |
cross_frame_attention=cross_frame_attention, | |
device=self.device, vram_limit_level=vram_limit_level | |
) | |
noise_pred_nega = lets_dance_with_long_video( | |
self.unet, motion_modules=self.motion_modules, controlnet=self.controlnet, | |
sample=latents, timestep=timestep, encoder_hidden_states=prompt_emb_nega, controlnet_frames=controlnet_frames, | |
animatediff_batch_size=animatediff_batch_size, animatediff_stride=animatediff_stride, | |
unet_batch_size=unet_batch_size, controlnet_batch_size=controlnet_batch_size, | |
cross_frame_attention=cross_frame_attention, | |
device=self.device, vram_limit_level=vram_limit_level | |
) | |
noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) | |
# DDIM and smoother | |
if smoother is not None and progress_id in smoother_progress_ids: | |
rendered_frames = self.scheduler.step(noise_pred, timestep, latents, to_final=True) | |
rendered_frames = self.decode_images(rendered_frames) | |
rendered_frames = smoother(rendered_frames, original_frames=input_frames) | |
target_latents = self.encode_images(rendered_frames) | |
noise_pred = self.scheduler.return_to_timestep(timestep, latents, target_latents) | |
latents = self.scheduler.step(noise_pred, timestep, latents) | |
# UI | |
if progress_bar_st is not None: | |
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps)) | |
# Decode image | |
output_frames = self.decode_images(latents) | |
# Post-process | |
if smoother is not None and (num_inference_steps in smoother_progress_ids or -1 in smoother_progress_ids): | |
output_frames = smoother(output_frames, original_frames=input_frames) | |
return output_frames | |
class SDVideoPipelineRunner: | |
def __init__(self, in_streamlit=False): | |
self.in_streamlit = in_streamlit | |
def load_pipeline(self, model_list, textual_inversion_folder, device, lora_alphas, controlnet_units): | |
# Load models | |
model_manager = ModelManager(torch_dtype=torch.float16, device=device) | |
model_manager.load_textual_inversions(textual_inversion_folder) | |
model_manager.load_models(model_list, lora_alphas=lora_alphas) | |
pipe = SDVideoPipeline.from_model_manager( | |
model_manager, | |
[ | |
ControlNetConfigUnit( | |
processor_id=unit["processor_id"], | |
model_path=unit["model_path"], | |
scale=unit["scale"] | |
) for unit in controlnet_units | |
] | |
) | |
return model_manager, pipe | |
def load_smoother(self, model_manager, smoother_configs): | |
smoother = SequencialProcessor.from_model_manager(model_manager, smoother_configs) | |
return smoother | |
def synthesize_video(self, model_manager, pipe, seed, smoother, **pipeline_inputs): | |
torch.manual_seed(seed) | |
if self.in_streamlit: | |
import streamlit as st | |
progress_bar_st = st.progress(0.0) | |
output_video = pipe(**pipeline_inputs, smoother=smoother, progress_bar_st=progress_bar_st) | |
progress_bar_st.progress(1.0) | |
else: | |
output_video = pipe(**pipeline_inputs, smoother=smoother) | |
model_manager.to("cpu") | |
return output_video | |
def load_video(self, video_file, image_folder, height, width, start_frame_id, end_frame_id): | |
video = VideoData(video_file=video_file, image_folder=image_folder, height=height, width=width) | |
if start_frame_id is None: | |
start_frame_id = 0 | |
if end_frame_id is None: | |
end_frame_id = len(video) | |
frames = [video[i] for i in range(start_frame_id, end_frame_id)] | |
return frames | |
def add_data_to_pipeline_inputs(self, data, pipeline_inputs): | |
pipeline_inputs["input_frames"] = self.load_video(**data["input_frames"]) | |
pipeline_inputs["num_frames"] = len(pipeline_inputs["input_frames"]) | |
pipeline_inputs["width"], pipeline_inputs["height"] = pipeline_inputs["input_frames"][0].size | |
if len(data["controlnet_frames"]) > 0: | |
pipeline_inputs["controlnet_frames"] = [self.load_video(**unit) for unit in data["controlnet_frames"]] | |
return pipeline_inputs | |
def save_output(self, video, output_folder, fps, config): | |
os.makedirs(output_folder, exist_ok=True) | |
save_frames(video, os.path.join(output_folder, "frames")) | |
save_video(video, os.path.join(output_folder, "video.mp4"), fps=fps) | |
config["pipeline"]["pipeline_inputs"]["input_frames"] = [] | |
config["pipeline"]["pipeline_inputs"]["controlnet_frames"] = [] | |
with open(os.path.join(output_folder, "config.json"), 'w') as file: | |
json.dump(config, file, indent=4) | |
def run(self, config): | |
if self.in_streamlit: | |
import streamlit as st | |
if self.in_streamlit: st.markdown("Loading videos ...") | |
config["pipeline"]["pipeline_inputs"] = self.add_data_to_pipeline_inputs(config["data"], config["pipeline"]["pipeline_inputs"]) | |
if self.in_streamlit: st.markdown("Loading videos ... done!") | |
if self.in_streamlit: st.markdown("Loading models ...") | |
model_manager, pipe = self.load_pipeline(**config["models"]) | |
if self.in_streamlit: st.markdown("Loading models ... done!") | |
if "smoother_configs" in config: | |
if self.in_streamlit: st.markdown("Loading smoother ...") | |
smoother = self.load_smoother(model_manager, config["smoother_configs"]) | |
if self.in_streamlit: st.markdown("Loading smoother ... done!") | |
else: | |
smoother = None | |
if self.in_streamlit: st.markdown("Synthesizing videos ...") | |
output_video = self.synthesize_video(model_manager, pipe, config["pipeline"]["seed"], smoother, **config["pipeline"]["pipeline_inputs"]) | |
if self.in_streamlit: st.markdown("Synthesizing videos ... done!") | |
if self.in_streamlit: st.markdown("Saving videos ...") | |
self.save_output(output_video, config["data"]["output_folder"], config["data"]["fps"], config) | |
if self.in_streamlit: st.markdown("Saving videos ... done!") | |
if self.in_streamlit: st.markdown("Finished!") | |
video_file = open(os.path.join(os.path.join(config["data"]["output_folder"], "video.mp4")), 'rb') | |
if self.in_streamlit: st.video(video_file.read()) | |