Spaces:
Runtime error
Runtime error
File size: 11,722 Bytes
fb4fac3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
from ..models import ModelManager, SVDImageEncoder, SVDUNet, SVDVAEEncoder, SVDVAEDecoder
from ..schedulers import ContinuousODEScheduler
import torch
from tqdm import tqdm
from PIL import Image
import numpy as np
from einops import rearrange, repeat
class SVDVideoPipeline(torch.nn.Module):
def __init__(self, device="cuda", torch_dtype=torch.float16):
super().__init__()
self.scheduler = ContinuousODEScheduler()
self.device = device
self.torch_dtype = torch_dtype
# models
self.image_encoder: SVDImageEncoder = None
self.unet: SVDUNet = None
self.vae_encoder: SVDVAEEncoder = None
self.vae_decoder: SVDVAEDecoder = None
def fetch_main_models(self, model_manager: ModelManager):
self.image_encoder = model_manager.image_encoder
self.unet = model_manager.unet
self.vae_encoder = model_manager.vae_encoder
self.vae_decoder = model_manager.vae_decoder
@staticmethod
def from_model_manager(model_manager: ModelManager, **kwargs):
pipe = SVDVideoPipeline(device=model_manager.device, torch_dtype=model_manager.torch_dtype)
pipe.fetch_main_models(model_manager)
return pipe
def preprocess_image(self, image):
image = torch.Tensor(np.array(image, dtype=np.float32) * (2 / 255) - 1).permute(2, 0, 1).unsqueeze(0)
return image
def decode_image(self, latent, tiled=False, tile_size=64, tile_stride=32):
image = self.vae_decoder(latent.to(self.device), tiled=tiled, tile_size=tile_size, tile_stride=tile_stride)[0]
image = image.cpu().permute(1, 2, 0).numpy()
image = Image.fromarray(((image / 2 + 0.5).clip(0, 1) * 255).astype("uint8"))
return image
def encode_image_with_clip(self, image):
image = self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype)
image = SVDCLIPImageProcessor().resize_with_antialiasing(image, (224, 224))
image = (image + 1.0) / 2.0
mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).reshape(1, 3, 1, 1).to(device=self.device, dtype=self.torch_dtype)
std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).reshape(1, 3, 1, 1).to(device=self.device, dtype=self.torch_dtype)
image = (image - mean) / std
image_emb = self.image_encoder(image)
return image_emb
def encode_image_with_vae(self, image, noise_aug_strength):
image = self.preprocess_image(image).to(device=self.device, dtype=self.torch_dtype)
noise = torch.randn(image.shape, device="cpu", dtype=self.torch_dtype).to(self.device)
image = image + noise_aug_strength * noise
image_emb = self.vae_encoder(image) / self.vae_encoder.scaling_factor
return image_emb
def encode_video_with_vae(self, video):
video = torch.concat([self.preprocess_image(frame) for frame in video], dim=0)
video = rearrange(video, "T C H W -> 1 C T H W")
video = video.to(device=self.device, dtype=self.torch_dtype)
latents = self.vae_encoder.encode_video(video)
latents = rearrange(latents[0], "C T H W -> T C H W")
return latents
def tensor2video(self, frames):
frames = rearrange(frames, "C T H W -> T H W C")
frames = ((frames.float() + 1) * 127.5).clip(0, 255).cpu().numpy().astype(np.uint8)
frames = [Image.fromarray(frame) for frame in frames]
return frames
def calculate_noise_pred(
self,
latents,
timestep,
add_time_id,
cfg_scales,
image_emb_vae_posi, image_emb_clip_posi,
image_emb_vae_nega, image_emb_clip_nega
):
# Positive side
noise_pred_posi = self.unet(
torch.cat([latents, image_emb_vae_posi], dim=1),
timestep, image_emb_clip_posi, add_time_id
)
# Negative side
noise_pred_nega = self.unet(
torch.cat([latents, image_emb_vae_nega], dim=1),
timestep, image_emb_clip_nega, add_time_id
)
# Classifier-free guidance
noise_pred = noise_pred_nega + cfg_scales * (noise_pred_posi - noise_pred_nega)
return noise_pred
def post_process_latents(self, latents, post_normalize=True, contrast_enhance_scale=1.0):
if post_normalize:
mean, std = latents.mean(), latents.std()
latents = (latents - latents.mean(dim=[1, 2, 3], keepdim=True)) / latents.std(dim=[1, 2, 3], keepdim=True) * std + mean
latents = latents * contrast_enhance_scale
return latents
@torch.no_grad()
def __call__(
self,
input_image=None,
input_video=None,
mask_frames=[],
mask_frame_ids=[],
min_cfg_scale=1.0,
max_cfg_scale=3.0,
denoising_strength=1.0,
num_frames=25,
height=576,
width=1024,
fps=7,
motion_bucket_id=127,
noise_aug_strength=0.02,
num_inference_steps=20,
post_normalize=True,
contrast_enhance_scale=1.2,
progress_bar_cmd=tqdm,
progress_bar_st=None,
):
# Prepare scheduler
self.scheduler.set_timesteps(num_inference_steps, denoising_strength=denoising_strength)
# Prepare latent tensors
noise = torch.randn((num_frames, 4, height//8, width//8), device="cpu", dtype=self.torch_dtype).to(self.device)
if denoising_strength == 1.0:
latents = noise.clone()
else:
latents = self.encode_video_with_vae(input_video)
latents = self.scheduler.add_noise(latents, noise, self.scheduler.timesteps[0])
# Prepare mask frames
if len(mask_frames) > 0:
mask_latents = self.encode_video_with_vae(mask_frames)
# Encode image
image_emb_clip_posi = self.encode_image_with_clip(input_image)
image_emb_clip_nega = torch.zeros_like(image_emb_clip_posi)
image_emb_vae_posi = repeat(self.encode_image_with_vae(input_image, noise_aug_strength), "B C H W -> (B T) C H W", T=num_frames)
image_emb_vae_nega = torch.zeros_like(image_emb_vae_posi)
# Prepare classifier-free guidance
cfg_scales = torch.linspace(min_cfg_scale, max_cfg_scale, num_frames)
cfg_scales = cfg_scales.reshape(num_frames, 1, 1, 1).to(device=self.device, dtype=self.torch_dtype)
# Prepare positional id
add_time_id = torch.tensor([[fps-1, motion_bucket_id, noise_aug_strength]], device=self.device)
# Denoise
for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)):
# Mask frames
for frame_id, mask_frame_id in enumerate(mask_frame_ids):
latents[mask_frame_id] = self.scheduler.add_noise(mask_latents[frame_id], noise[mask_frame_id], timestep)
# Fetch model output
noise_pred = self.calculate_noise_pred(
latents, timestep, add_time_id, cfg_scales,
image_emb_vae_posi, image_emb_clip_posi, image_emb_vae_nega, image_emb_clip_nega
)
# Forward Euler
latents = self.scheduler.step(noise_pred, timestep, latents)
# Update progress bar
if progress_bar_st is not None:
progress_bar_st.progress(progress_id / len(self.scheduler.timesteps))
# Decode image
latents = self.post_process_latents(latents, post_normalize=post_normalize, contrast_enhance_scale=contrast_enhance_scale)
video = self.vae_decoder.decode_video(latents, progress_bar=progress_bar_cmd)
video = self.tensor2video(video)
return video
class SVDCLIPImageProcessor:
def __init__(self):
pass
def resize_with_antialiasing(self, input, size, interpolation="bicubic", align_corners=True):
h, w = input.shape[-2:]
factors = (h / size[0], w / size[1])
# First, we have to determine sigma
# Taken from skimage: https://github.com/scikit-image/scikit-image/blob/v0.19.2/skimage/transform/_warps.py#L171
sigmas = (
max((factors[0] - 1.0) / 2.0, 0.001),
max((factors[1] - 1.0) / 2.0, 0.001),
)
# Now kernel size. Good results are for 3 sigma, but that is kind of slow. Pillow uses 1 sigma
# https://github.com/python-pillow/Pillow/blob/master/src/libImaging/Resample.c#L206
# But they do it in the 2 passes, which gives better results. Let's try 2 sigmas for now
ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3))
# Make sure it is odd
if (ks[0] % 2) == 0:
ks = ks[0] + 1, ks[1]
if (ks[1] % 2) == 0:
ks = ks[0], ks[1] + 1
input = self._gaussian_blur2d(input, ks, sigmas)
output = torch.nn.functional.interpolate(input, size=size, mode=interpolation, align_corners=align_corners)
return output
def _compute_padding(self, kernel_size):
"""Compute padding tuple."""
# 4 or 6 ints: (padding_left, padding_right,padding_top,padding_bottom)
# https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad
if len(kernel_size) < 2:
raise AssertionError(kernel_size)
computed = [k - 1 for k in kernel_size]
# for even kernels we need to do asymmetric padding :(
out_padding = 2 * len(kernel_size) * [0]
for i in range(len(kernel_size)):
computed_tmp = computed[-(i + 1)]
pad_front = computed_tmp // 2
pad_rear = computed_tmp - pad_front
out_padding[2 * i + 0] = pad_front
out_padding[2 * i + 1] = pad_rear
return out_padding
def _filter2d(self, input, kernel):
# prepare kernel
b, c, h, w = input.shape
tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype)
tmp_kernel = tmp_kernel.expand(-1, c, -1, -1)
height, width = tmp_kernel.shape[-2:]
padding_shape: list[int] = self._compute_padding([height, width])
input = torch.nn.functional.pad(input, padding_shape, mode="reflect")
# kernel and input tensor reshape to align element-wise or batch-wise params
tmp_kernel = tmp_kernel.reshape(-1, 1, height, width)
input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1))
# convolve the tensor with the kernel.
output = torch.nn.functional.conv2d(input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1)
out = output.view(b, c, h, w)
return out
def _gaussian(self, window_size: int, sigma):
if isinstance(sigma, float):
sigma = torch.tensor([[sigma]])
batch_size = sigma.shape[0]
x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1)
if window_size % 2 == 0:
x = x + 0.5
gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0)))
return gauss / gauss.sum(-1, keepdim=True)
def _gaussian_blur2d(self, input, kernel_size, sigma):
if isinstance(sigma, tuple):
sigma = torch.tensor([sigma], dtype=input.dtype)
else:
sigma = sigma.to(dtype=input.dtype)
ky, kx = int(kernel_size[0]), int(kernel_size[1])
bs = sigma.shape[0]
kernel_x = self._gaussian(kx, sigma[:, 1].view(bs, 1))
kernel_y = self._gaussian(ky, sigma[:, 0].view(bs, 1))
out_x = self._filter2d(input, kernel_x[..., None, :])
out = self._filter2d(out_x, kernel_y[..., None])
return out
|