Spaces:
Runtime error
Runtime error
File size: 21,545 Bytes
c6cb55a 7bbebbe c6cb55a 7bbebbe c6cb55a 7bbebbe c6cb55a 7bbebbe c6cb55a 7bbebbe c6cb55a 7bbebbe 7f5ba08 7bbebbe 7f5ba08 7bbebbe 7f5ba08 c0a8792 7bbebbe c6cb55a 7bbebbe c6cb55a 7bbebbe c6cb55a 7bbebbe c6cb55a 7bbebbe c6cb55a 7bbebbe c6cb55a c0a8792 7bbebbe c0a8792 7bbebbe c0a8792 7bbebbe c0a8792 c6cb55a c0a8792 c6cb55a 7bbebbe c0a8792 7bbebbe c0a8792 c6cb55a 7bbebbe c6cb55a 7bbebbe c6cb55a 7bbebbe 7f5ba08 7bbebbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
import os
import torch
import librosa
import gradio as gr
from scipy.io.wavfile import write
from transformers import WavLMModel
import utils
from models import SynthesizerTrn
from mel_processing import mel_spectrogram_torch
from speaker_encoder.voice_encoder import SpeakerEncoder
import time
from textwrap import dedent
import mdtex2html
from loguru import logger
from transformers import AutoModel, AutoTokenizer
from tts_voice import tts_order_voice
import edge_tts
import tempfile
import anyio
import os, sys
from src.gradio_demo import SadTalker
try:
import webui # in webui
in_webui = True
except:
in_webui = False
def toggle_audio_file(choice):
if choice == False:
return gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True)
def ref_video_fn(path_of_ref_video):
if path_of_ref_video is not None:
return gr.update(value=True)
else:
return gr.update(value=False)
sad_talker = SadTalker("checkpoints", "src/config", lazy_load=True)
'''
def get_wavlm():
os.system('gdown https://drive.google.com/uc?id=12-cB34qCTvByWT-QtOcZaqwwO21FLSqU')
shutil.move('WavLM-Large.pt', 'wavlm')
'''
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
smodel = SpeakerEncoder('speaker_encoder/ckpt/pretrained_bak_5805000.pt')
print("Loading FreeVC(24k)...")
hps = utils.get_hparams_from_file("configs/freevc-24.json")
freevc_24 = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model).to(device)
_ = freevc_24.eval()
_ = utils.load_checkpoint("checkpoint/freevc-24.pth", freevc_24, None)
print("Loading WavLM for content...")
cmodel = WavLMModel.from_pretrained("microsoft/wavlm-large").to(device)
def convert(model, src, tgt):
with torch.no_grad():
# tgt
wav_tgt, _ = librosa.load(tgt, sr=hps.data.sampling_rate)
wav_tgt, _ = librosa.effects.trim(wav_tgt, top_db=20)
if model == "FreeVC" or model == "FreeVC (24kHz)":
g_tgt = smodel.embed_utterance(wav_tgt)
g_tgt = torch.from_numpy(g_tgt).unsqueeze(0).to(device)
else:
wav_tgt = torch.from_numpy(wav_tgt).unsqueeze(0).to(device)
mel_tgt = mel_spectrogram_torch(
wav_tgt,
hps.data.filter_length,
hps.data.n_mel_channels,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
hps.data.mel_fmin,
hps.data.mel_fmax
)
# src
wav_src, _ = librosa.load(src, sr=hps.data.sampling_rate)
wav_src = torch.from_numpy(wav_src).unsqueeze(0).to(device)
c = cmodel(wav_src).last_hidden_state.transpose(1, 2).to(device)
# infer
if model == "FreeVC":
audio = freevc.infer(c, g=g_tgt)
elif model == "FreeVC-s":
audio = freevc_s.infer(c, mel=mel_tgt)
else:
audio = freevc_24.infer(c, g=g_tgt)
audio = audio[0][0].data.cpu().float().numpy()
if model == "FreeVC" or model == "FreeVC-s":
write("out.wav", hps.data.sampling_rate, audio)
else:
write("out.wav", 24000, audio)
out = "out.wav"
return out
# GLM2
language_dict = tts_order_voice
# fix timezone in Linux
os.environ["TZ"] = "Asia/Shanghai"
try:
time.tzset() # type: ignore # pylint: disable=no-member
except Exception:
# Windows
logger.warning("Windows, cant run time.tzset()")
# model_name = "THUDM/chatglm2-6b"
model_name = "THUDM/chatglm2-6b"
RETRY_FLAG = False
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# model = AutoModel.from_pretrained(model_name, trust_remote_code=True).cuda()
# 4/8 bit
# model = AutoModel.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True).quantize(4).cuda()
has_cuda = torch.cuda.is_available()
# has_cuda = False # force cpu
if has_cuda:
model_glm = (
AutoModel.from_pretrained(model_name, trust_remote_code=True).cuda().half()
) # 3.92G
else:
model_glm = AutoModel.from_pretrained(
model_name, trust_remote_code=True
).float() # .float() .half().float()
model_glm = model_glm.eval()
_ = """Override Chatbot.postprocess"""
def postprocess(self, y):
if y is None:
return []
for i, (message, response) in enumerate(y):
y[i] = (
None if message is None else mdtex2html.convert((message)),
None if response is None else mdtex2html.convert(response),
)
return y
gr.Chatbot.postprocess = postprocess
def parse_text(text):
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split("`")
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = "<br></code></pre>"
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", r"\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "<br>" + line
text = "".join(lines)
return text
def predict(
RETRY_FLAG, input, chatbot, max_length, top_p, temperature, history, past_key_values
):
try:
chatbot.append((parse_text(input), ""))
except Exception as exc:
logger.error(exc)
logger.debug(f"{chatbot=}")
_ = """
if chatbot:
chatbot[-1] = (parse_text(input), str(exc))
yield chatbot, history, past_key_values
# """
yield chatbot, history, past_key_values
for response, history, past_key_values in model_glm.stream_chat(
tokenizer,
input,
history,
past_key_values=past_key_values,
return_past_key_values=True,
max_length=max_length,
top_p=top_p,
temperature=temperature,
):
chatbot[-1] = (parse_text(input), parse_text(response))
# chatbot[-1][-1] = parse_text(response)
yield chatbot, history, past_key_values, parse_text(response)
def trans_api(input, max_length=4096, top_p=0.8, temperature=0.2):
if max_length < 10:
max_length = 4096
if top_p < 0.1 or top_p > 1:
top_p = 0.85
if temperature <= 0 or temperature > 1:
temperature = 0.01
try:
res, _ = model_glm.chat(
tokenizer,
input,
history=[],
past_key_values=None,
max_length=max_length,
top_p=top_p,
temperature=temperature,
)
# logger.debug(f"{res=} \n{_=}")
except Exception as exc:
logger.error(f"{exc=}")
res = str(exc)
return res
def reset_user_input():
return gr.update(value="")
def reset_state():
return [], [], None, ""
# Delete last turn
def delete_last_turn(chat, history):
if chat and history:
chat.pop(-1)
history.pop(-1)
return chat, history
# Regenerate response
def retry_last_answer(
user_input, chatbot, max_length, top_p, temperature, history, past_key_values
):
if chatbot and history:
# Removing the previous conversation from chat
chatbot.pop(-1)
# Setting up a flag to capture a retry
RETRY_FLAG = True
# Getting last message from user
user_input = history[-1][0]
# Removing bot response from the history
history.pop(-1)
yield from predict(
RETRY_FLAG, # type: ignore
user_input,
chatbot,
max_length,
top_p,
temperature,
history,
past_key_values,
)
# print
def print(text):
return text
# TTS
async def text_to_speech_edge(text, language_code):
voice = language_dict[language_code]
communicate = edge_tts.Communicate(text, voice)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path
with gr.Blocks(title="ChatGLM2-6B-int4", theme=gr.themes.Soft(text_size="sm")) as demo:
gr.HTML("<center>"
"<h1>📺💕🎶 - ChatGLM2+声音克隆+视频对话:和喜欢的角色畅所欲言吧!</h1>"
"</center>")
gr.Markdown("## <center>🥳 - ChatGLM2+FreeVC+SadTalker,为您打造沉浸式的视频对话体验,支持中英双语</center>")
gr.Markdown("## <center>🌊 - 更多精彩应用,尽在[滔滔AI](http://www.talktalkai.com);滔滔AI,为爱滔滔!💕</center>")
gr.Markdown("### <center>⭐ - 如果您喜欢这个程序,欢迎给我的[GitHub项目](https://github.com/KevinWang676/ChatGLM2-Voice-Cloning)点赞支持!</center>")
with gr.Tab("🍻 - ChatGLM2聊天区"):
with gr.Accordion("📒 相关信息", open=False):
_ = f""" ChatGLM2的可选参数信息:
* Low temperature: responses will be more deterministic and focused; High temperature: responses more creative.
* Suggested temperatures -- translation: up to 0.3; chatting: > 0.4
* Top P controls dynamic vocabulary selection based on context.\n
如果您想让ChatGLM2进行角色扮演并与之对话,请先输入恰当的提示词,如“请你扮演成动漫角色蜡笔小新并和我进行对话”;您也可以为ChatGLM2提供自定义的角色设定\n
当您使用声音克隆功能时,请先在此程序的对应位置上传一段您喜欢的音频
"""
gr.Markdown(dedent(_))
chatbot = gr.Chatbot(height=300)
with gr.Row():
with gr.Column(scale=4):
with gr.Column(scale=12):
user_input = gr.Textbox(
label="请在此处和GLM2聊天 (按回车键即可发送)",
placeholder="聊点什么吧",
)
RETRY_FLAG = gr.Checkbox(value=False, visible=False)
with gr.Column(min_width=32, scale=1):
with gr.Row():
submitBtn = gr.Button("开始和GLM2交流吧", variant="primary")
deleteBtn = gr.Button("删除最新一轮对话", variant="secondary")
retryBtn = gr.Button("重新生成最新一轮对话", variant="secondary")
with gr.Accordion("🔧 更多设置", open=False):
with gr.Row():
emptyBtn = gr.Button("清空所有聊天记录")
max_length = gr.Slider(
0,
32768,
value=8192,
step=1.0,
label="Maximum length",
interactive=True,
)
top_p = gr.Slider(
0, 1, value=0.85, step=0.01, label="Top P", interactive=True
)
temperature = gr.Slider(
0.01, 1, value=0.95, step=0.01, label="Temperature", interactive=True
)
with gr.Row():
test1 = gr.Textbox(label="GLM2的最新回答 (可编辑)", lines = 3)
with gr.Column():
language = gr.Dropdown(choices=list(language_dict.keys()), value="普通话 (中国大陆)-Xiaoxiao-女", label="请选择文本对应的语言及您喜欢的说话人")
tts_btn = gr.Button("生成对应的音频吧", variant="primary")
output_audio = gr.Audio(type="filepath", label="为您生成的音频", interactive=False)
tts_btn.click(text_to_speech_edge, inputs=[test1, language], outputs=[output_audio])
with gr.Row():
model_choice = gr.Dropdown(choices=["FreeVC", "FreeVC-s", "FreeVC (24kHz)"], value="FreeVC (24kHz)", label="Model", visible=False)
audio1 = output_audio
audio2 = gr.Audio(label="请上传您喜欢的声音进行声音克隆", type='filepath')
clone_btn = gr.Button("开始AI声音克隆吧", variant="primary")
audio_cloned = gr.Audio(label="为您生成的专属声音克隆音频", type='filepath')
clone_btn.click(convert, inputs=[model_choice, audio1, audio2], outputs=[audio_cloned])
history = gr.State([])
past_key_values = gr.State(None)
user_input.submit(
predict,
[
RETRY_FLAG,
user_input,
chatbot,
max_length,
top_p,
temperature,
history,
past_key_values,
],
[chatbot, history, past_key_values, test1],
show_progress="full",
)
submitBtn.click(
predict,
[
RETRY_FLAG,
user_input,
chatbot,
max_length,
top_p,
temperature,
history,
past_key_values,
],
[chatbot, history, past_key_values, test1],
show_progress="full",
api_name="predict",
)
submitBtn.click(reset_user_input, [], [user_input])
emptyBtn.click(
reset_state, outputs=[chatbot, history, past_key_values, test1], show_progress="full"
)
retryBtn.click(
retry_last_answer,
inputs=[
user_input,
chatbot,
max_length,
top_p,
temperature,
history,
past_key_values,
],
# outputs = [chatbot, history, last_user_message, user_message]
outputs=[chatbot, history, past_key_values, test1],
)
deleteBtn.click(delete_last_turn, [chatbot, history], [chatbot, history])
with gr.Accordion("📔 提示词示例", open=False):
etext = """In America, where cars are an important part of the national psyche, a decade ago people had suddenly started to drive less, which had not happened since the oil shocks of the 1970s. """
examples = gr.Examples(
examples=[
["Explain the plot of Cinderella in a sentence."],
[
"How long does it take to become proficient in French, and what are the best methods for retaining information?"
],
["What are some common mistakes to avoid when writing code?"],
["Build a prompt to generate a beautiful portrait of a horse"],
["Suggest four metaphors to describe the benefits of AI"],
["Write a pop song about leaving home for the sandy beaches."],
["Write a summary demonstrating my ability to tame lions"],
["鲁迅和周树人什么关系"],
["从前有一头牛,这头牛后面有什么?"],
["正无穷大加一大于正无穷大吗?"],
["正无穷大加正无穷大大于正无穷大吗?"],
["-2的平方根等于什么"],
["树上有5只鸟,猎人开枪打死了一只。树上还有几只鸟?"],
["树上有11只鸟,猎人开枪打死了一只。树上还有几只鸟?提示:需考虑鸟可能受惊吓飞走。"],
["鲁迅和周树人什么关系 用英文回答"],
["以红楼梦的行文风格写一张委婉的请假条。不少于320字。"],
[f"{etext} 翻成中文,列出3个版本"],
[f"{etext} \n 翻成中文,保留原意,但使用文学性的语言。不要写解释。列出3个版本"],
["js 判断一个数是不是质数"],
["js 实现python 的 range(10)"],
["js 实现python 的 [*(range(10)]"],
["假定 1 + 2 = 4, 试求 7 + 8"],
["Erkläre die Handlung von Cinderella in einem Satz."],
["Erkläre die Handlung von Cinderella in einem Satz. Auf Deutsch"],
],
inputs=[user_input],
examples_per_page=30,
)
with gr.Accordion("For Chat/Translation API", open=False, visible=False):
input_text = gr.Text()
tr_btn = gr.Button("Go", variant="primary")
out_text = gr.Text()
tr_btn.click(
trans_api,
[input_text, max_length, top_p, temperature],
out_text,
# show_progress="full",
api_name="tr",
)
_ = """
input_text.submit(
trans_api,
[input_text, max_length, top_p, temperature],
out_text,
show_progress="full",
api_name="tr1",
)
# """
with gr.Tab("📺 - 视频聊天区"):
with gr.Row().style(equal_height=False):
with gr.Column(variant='panel'):
with gr.Tabs(elem_id="sadtalker_source_image"):
with gr.TabItem('图片上传'):
with gr.Row():
source_image = gr.Image(label="请上传一张您喜欢角色的图片", source="upload", type="filepath", elem_id="img2img_image").style(width=512)
with gr.Tabs(elem_id="sadtalker_driven_audio"):
with gr.TabItem('💡您还可以将视频下载到本地'):
with gr.Column(variant='panel'):
driven_audio = audio_cloned
with gr.Column(variant='panel'):
with gr.Tabs(elem_id="sadtalker_checkbox"):
with gr.TabItem('视频设置'):
with gr.Column(variant='panel'):
# width = gr.Slider(minimum=64, elem_id="img2img_width", maximum=2048, step=8, label="Manually Crop Width", value=512) # img2img_width
# height = gr.Slider(minimum=64, elem_id="img2img_height", maximum=2048, step=8, label="Manually Crop Height", value=512) # img2img_width
pose_style = gr.Slider(minimum=0, maximum=46, step=1, label="Pose style", value=0, visible=False)
size_of_image = gr.Radio([256, 512], value=256, label='face model resolution', info="use 256/512 model?", visible=False)
preprocess_type = gr.Radio(['crop', 'full'], value='crop', label='是否聚焦角色面部', info="crop:视频会聚焦角色面部;full:视频会显示图片全貌")
is_still_mode = gr.Checkbox(label="静态模式 (开启静态模式,角色的面部动作会减少;默认开启)", value=True)
batch_size = gr.Slider(label="Batch size (数值越大,生成速度越快;若显卡性能好,可增大数值)", step=1, maximum=32, value=2)
enhancer = gr.Checkbox(label="GFPGAN as Face enhancer", value=True, visible=False)
submit = gr.Button('开始视频聊天吧', elem_id="sadtalker_generate", variant='primary')
with gr.Tabs(elem_id="sadtalker_genearted"):
gen_video = gr.Video(label="Generated video", format="mp4").style(width=256)
submit.click(
fn=sad_talker.test,
inputs=[source_image,
driven_audio,
preprocess_type,
is_still_mode,
enhancer,
batch_size,
size_of_image,
pose_style
],
outputs=[gen_video]
)
gr.Markdown("### <center>注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。</center>")
gr.Markdown("<center>💡 - 如何使用此程序:输入您对ChatGLM的提问后,依次点击“开始和GLM2交流吧”、“生成对应的音频吧”、“开始AI声音克隆吧”、“开始视频聊天吧”四个按键即可;使用声音克隆功能时,请先上传一段您喜欢的音频</center>")
gr.HTML('''
<div class="footer">
<p>🌊🏞️🎶 - 江水东流急,滔滔无尽声。 明·顾璘
</p>
</div>
''')
demo.queue().launch(show_error=True, debug=True)
|