Spaces:
Runtime error
Runtime error
kevinwang676
commited on
Commit
•
132064f
1
Parent(s):
869a2d9
Upload 7 files
Browse files- Dockerfile.txt +38 -0
- config.yaml +8 -0
- gitignore (1).txt +14 -0
- pyproject.toml +60 -0
- setup.py +3 -0
- swap_voice.py +62 -0
- webui.py +468 -0
Dockerfile.txt
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM debian:stable
|
2 |
+
|
3 |
+
# Install system packages
|
4 |
+
RUN apt update && apt install -y git pip
|
5 |
+
|
6 |
+
# Create non-root user
|
7 |
+
RUN useradd -m -d /bark bark
|
8 |
+
|
9 |
+
# Run as new user
|
10 |
+
USER bark
|
11 |
+
WORKDIR /bark
|
12 |
+
|
13 |
+
# Clone git repo
|
14 |
+
RUN git clone https://github.com/C0untFloyd/bark-gui
|
15 |
+
|
16 |
+
# Switch to git directory
|
17 |
+
WORKDIR /bark/bark-gui
|
18 |
+
|
19 |
+
# Append pip bin path to PATH
|
20 |
+
ENV PATH=$PATH:/bark/.local/bin
|
21 |
+
|
22 |
+
# Install dependancies
|
23 |
+
RUN pip install .
|
24 |
+
RUN pip install -r requirements.txt
|
25 |
+
|
26 |
+
# List on all addresses, since we are in a container.
|
27 |
+
RUN sed -i "s/server_name: ''/server_name: 0.0.0.0/g" ./config.yaml
|
28 |
+
|
29 |
+
# Suggested volumes
|
30 |
+
VOLUME /bark/bark-gui/assets/prompts/custom
|
31 |
+
VOLUME /bark/bark-gui/models
|
32 |
+
VOLUME /bark/.cache/huggingface/hub
|
33 |
+
|
34 |
+
# Default port for web-ui
|
35 |
+
EXPOSE 7860/tcp
|
36 |
+
|
37 |
+
# Start script
|
38 |
+
CMD python3 webui.py
|
config.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
input_text_desired_length: 110
|
2 |
+
input_text_max_length: 170
|
3 |
+
selected_theme: freddyaboulton/dracula_revamped
|
4 |
+
server_name: ''
|
5 |
+
server_port: 0
|
6 |
+
server_share: false
|
7 |
+
silence_between_sentences: 250
|
8 |
+
silence_between_speakers: 500
|
gitignore (1).txt
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
/outputs
|
3 |
+
/speakers
|
4 |
+
.vs
|
5 |
+
*.npz
|
6 |
+
*.wav
|
7 |
+
*.npy
|
8 |
+
.vs/
|
9 |
+
/models
|
10 |
+
/bark_ui_enhanced.egg-info
|
11 |
+
/build/lib/bark
|
12 |
+
*.pth
|
13 |
+
*.pt
|
14 |
+
*.zip
|
pyproject.toml
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[build-system]
|
2 |
+
requires = ["setuptools"]
|
3 |
+
build-backend = "setuptools.build_meta"
|
4 |
+
|
5 |
+
[project]
|
6 |
+
name = "bark-ui-enhanced"
|
7 |
+
version = "0.7.0"
|
8 |
+
description = "Bark text to audio model with addition features and a Web UI"
|
9 |
+
readme = "README.md"
|
10 |
+
requires-python = ">=3.8"
|
11 |
+
authors = [
|
12 |
+
{name = "Suno Inc (original Bark)", email = "[email protected]"},
|
13 |
+
{name = "Count Floyd"},
|
14 |
+
]
|
15 |
+
# MIT License
|
16 |
+
license = {file = "LICENSE"}
|
17 |
+
|
18 |
+
dependencies = [
|
19 |
+
"boto3",
|
20 |
+
"encodec",
|
21 |
+
"funcy",
|
22 |
+
"huggingface-hub>=0.14.1",
|
23 |
+
"numpy",
|
24 |
+
"scipy",
|
25 |
+
"tokenizers",
|
26 |
+
"torch",
|
27 |
+
"tqdm",
|
28 |
+
"transformers",
|
29 |
+
]
|
30 |
+
|
31 |
+
[project.urls]
|
32 |
+
source = "https://github.com/C0untFloyd/bark-gui"
|
33 |
+
|
34 |
+
[project.optional-dependencies]
|
35 |
+
dev = [
|
36 |
+
"bandit",
|
37 |
+
"black",
|
38 |
+
"codecov",
|
39 |
+
"flake8",
|
40 |
+
"hypothesis>=6.14,<7",
|
41 |
+
"isort>=5.0.0,<6",
|
42 |
+
"jupyter",
|
43 |
+
"mypy",
|
44 |
+
"nbconvert",
|
45 |
+
"nbformat",
|
46 |
+
"pydocstyle",
|
47 |
+
"pylint",
|
48 |
+
"pytest",
|
49 |
+
"pytest-cov",
|
50 |
+
]
|
51 |
+
|
52 |
+
[tool.setuptools]
|
53 |
+
packages = ["bark"]
|
54 |
+
|
55 |
+
[tool.setuptools.package-data]
|
56 |
+
bark = ["assets/prompts/*.npz", "assets/prompts/v2/*.npz"]
|
57 |
+
|
58 |
+
|
59 |
+
[tool.black]
|
60 |
+
line-length = 100
|
setup.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from setuptools import setup
|
2 |
+
|
3 |
+
setup()
|
swap_voice.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from bark.generation import load_codec_model, generate_text_semantic, grab_best_device
|
2 |
+
from bark import SAMPLE_RATE
|
3 |
+
from encodec.utils import convert_audio
|
4 |
+
from bark.hubert.hubert_manager import HuBERTManager
|
5 |
+
from bark.hubert.pre_kmeans_hubert import CustomHubert
|
6 |
+
from bark.hubert.customtokenizer import CustomTokenizer
|
7 |
+
from bark.api import semantic_to_waveform
|
8 |
+
from scipy.io.wavfile import write as write_wav
|
9 |
+
from util.helper import create_filename
|
10 |
+
from util.settings import Settings
|
11 |
+
|
12 |
+
|
13 |
+
import torchaudio
|
14 |
+
import torch
|
15 |
+
import os
|
16 |
+
import gradio
|
17 |
+
|
18 |
+
def swap_voice_from_audio(swap_audio_filename, selected_speaker, tokenizer_lang, seed, batchcount, progress=gradio.Progress(track_tqdm=True)):
|
19 |
+
use_gpu = not os.environ.get("BARK_FORCE_CPU", False)
|
20 |
+
progress(0, desc="Loading Codec")
|
21 |
+
|
22 |
+
# From https://github.com/gitmylo/bark-voice-cloning-HuBERT-quantizer
|
23 |
+
hubert_manager = HuBERTManager()
|
24 |
+
hubert_manager.make_sure_hubert_installed()
|
25 |
+
hubert_manager.make_sure_tokenizer_installed(tokenizer_lang=tokenizer_lang)
|
26 |
+
|
27 |
+
# From https://github.com/gitmylo/bark-voice-cloning-HuBERT-quantizer
|
28 |
+
# Load HuBERT for semantic tokens
|
29 |
+
|
30 |
+
# Load the HuBERT model
|
31 |
+
device = grab_best_device(use_gpu)
|
32 |
+
hubert_model = CustomHubert(checkpoint_path='./models/hubert/hubert.pt').to(device)
|
33 |
+
model = load_codec_model(use_gpu=use_gpu)
|
34 |
+
|
35 |
+
# Load the CustomTokenizer model
|
36 |
+
tokenizer = CustomTokenizer.load_from_checkpoint(f'./models/hubert/{tokenizer_lang}_tokenizer.pth').to(device) # Automatically uses the right layers
|
37 |
+
|
38 |
+
progress(0.25, desc="Converting WAV")
|
39 |
+
|
40 |
+
# Load and pre-process the audio waveform
|
41 |
+
wav, sr = torchaudio.load(swap_audio_filename)
|
42 |
+
if wav.shape[0] == 2: # Stereo to mono if needed
|
43 |
+
wav = wav.mean(0, keepdim=True)
|
44 |
+
|
45 |
+
wav = convert_audio(wav, sr, model.sample_rate, model.channels)
|
46 |
+
wav = wav.to(device)
|
47 |
+
semantic_vectors = hubert_model.forward(wav, input_sample_hz=model.sample_rate)
|
48 |
+
semantic_tokens = tokenizer.get_token(semantic_vectors)
|
49 |
+
|
50 |
+
audio = semantic_to_waveform(
|
51 |
+
semantic_tokens,
|
52 |
+
history_prompt=selected_speaker,
|
53 |
+
temp=0.7,
|
54 |
+
silent=False,
|
55 |
+
output_full=False)
|
56 |
+
|
57 |
+
settings = Settings('config.yaml')
|
58 |
+
|
59 |
+
result = create_filename(settings.output_folder_path, None, "swapvoice",".wav")
|
60 |
+
write_wav(result, SAMPLE_RATE, audio)
|
61 |
+
return result
|
62 |
+
|
webui.py
ADDED
@@ -0,0 +1,468 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from cProfile import label
|
2 |
+
import dataclasses
|
3 |
+
from distutils.command.check import check
|
4 |
+
from doctest import Example
|
5 |
+
import gradio as gr
|
6 |
+
import os
|
7 |
+
import sys
|
8 |
+
import numpy as np
|
9 |
+
import logging
|
10 |
+
import torch
|
11 |
+
import pytorch_seed
|
12 |
+
import time
|
13 |
+
|
14 |
+
from xml.sax import saxutils
|
15 |
+
from bark.api import generate_with_settings
|
16 |
+
from bark.api import save_as_prompt
|
17 |
+
from util.settings import Settings
|
18 |
+
#import nltk
|
19 |
+
|
20 |
+
from bark import SAMPLE_RATE
|
21 |
+
from cloning.clonevoice import clone_voice
|
22 |
+
from bark.generation import SAMPLE_RATE, preload_models, _load_history_prompt, codec_decode
|
23 |
+
from scipy.io.wavfile import write as write_wav
|
24 |
+
from util.parseinput import split_and_recombine_text, build_ssml, is_ssml, create_clips_from_ssml
|
25 |
+
from datetime import datetime
|
26 |
+
from tqdm.auto import tqdm
|
27 |
+
from util.helper import create_filename, add_id3_tag
|
28 |
+
from swap_voice import swap_voice_from_audio
|
29 |
+
from training.training_prepare import prepare_semantics_from_text, prepare_wavs_from_semantics
|
30 |
+
from training.train import training_prepare_files, train
|
31 |
+
|
32 |
+
settings = Settings('config.yaml')
|
33 |
+
|
34 |
+
|
35 |
+
def generate_text_to_speech(text, selected_speaker, text_temp, waveform_temp, eos_prob, quick_generation, complete_settings, seed, batchcount, progress=gr.Progress(track_tqdm=True)):
|
36 |
+
# Chunk the text into smaller pieces then combine the generated audio
|
37 |
+
|
38 |
+
# generation settings
|
39 |
+
if selected_speaker == 'None':
|
40 |
+
selected_speaker = None
|
41 |
+
|
42 |
+
voice_name = selected_speaker
|
43 |
+
|
44 |
+
if text == None or len(text) < 1:
|
45 |
+
if selected_speaker == None:
|
46 |
+
raise gr.Error('No text entered!')
|
47 |
+
|
48 |
+
# Extract audio data from speaker if no text and speaker selected
|
49 |
+
voicedata = _load_history_prompt(voice_name)
|
50 |
+
audio_arr = codec_decode(voicedata["fine_prompt"])
|
51 |
+
result = create_filename(settings.output_folder_path, "None", "extract",".wav")
|
52 |
+
save_wav(audio_arr, result)
|
53 |
+
return result
|
54 |
+
|
55 |
+
if batchcount < 1:
|
56 |
+
batchcount = 1
|
57 |
+
|
58 |
+
|
59 |
+
silenceshort = np.zeros(int((float(settings.silence_sentence) / 1000.0) * SAMPLE_RATE), dtype=np.int16) # quarter second of silence
|
60 |
+
silencelong = np.zeros(int((float(settings.silence_speakers) / 1000.0) * SAMPLE_RATE), dtype=np.float32) # half a second of silence
|
61 |
+
use_last_generation_as_history = "Use last generation as history" in complete_settings
|
62 |
+
save_last_generation = "Save generation as Voice" in complete_settings
|
63 |
+
for l in range(batchcount):
|
64 |
+
currentseed = seed
|
65 |
+
if seed != None and seed > 2**32 - 1:
|
66 |
+
logger.warning(f"Seed {seed} > 2**32 - 1 (max), setting to random")
|
67 |
+
currentseed = None
|
68 |
+
if currentseed == None or currentseed <= 0:
|
69 |
+
currentseed = np.random.default_rng().integers(1, 2**32 - 1)
|
70 |
+
assert(0 < currentseed and currentseed < 2**32)
|
71 |
+
|
72 |
+
progress(0, desc="Generating")
|
73 |
+
|
74 |
+
full_generation = None
|
75 |
+
|
76 |
+
all_parts = []
|
77 |
+
complete_text = ""
|
78 |
+
text = text.lstrip()
|
79 |
+
if is_ssml(text):
|
80 |
+
list_speak = create_clips_from_ssml(text)
|
81 |
+
prev_speaker = None
|
82 |
+
for i, clip in tqdm(enumerate(list_speak), total=len(list_speak)):
|
83 |
+
selected_speaker = clip[0]
|
84 |
+
# Add pause break between speakers
|
85 |
+
if i > 0 and selected_speaker != prev_speaker:
|
86 |
+
all_parts += [silencelong.copy()]
|
87 |
+
prev_speaker = selected_speaker
|
88 |
+
text = clip[1]
|
89 |
+
text = saxutils.unescape(text)
|
90 |
+
if selected_speaker == "None":
|
91 |
+
selected_speaker = None
|
92 |
+
|
93 |
+
print(f"\nGenerating Text ({i+1}/{len(list_speak)}) -> {selected_speaker} (Seed {currentseed}):`{text}`")
|
94 |
+
complete_text += text
|
95 |
+
with pytorch_seed.SavedRNG(currentseed):
|
96 |
+
audio_array = generate_with_settings(text_prompt=text, voice_name=selected_speaker, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob)
|
97 |
+
currentseed = torch.random.initial_seed()
|
98 |
+
if len(list_speak) > 1:
|
99 |
+
filename = create_filename(settings.output_folder_path, currentseed, "audioclip",".wav")
|
100 |
+
save_wav(audio_array, filename)
|
101 |
+
add_id3_tag(filename, text, selected_speaker, currentseed)
|
102 |
+
|
103 |
+
all_parts += [audio_array]
|
104 |
+
else:
|
105 |
+
texts = split_and_recombine_text(text, settings.input_text_desired_length, settings.input_text_max_length)
|
106 |
+
for i, text in tqdm(enumerate(texts), total=len(texts)):
|
107 |
+
print(f"\nGenerating Text ({i+1}/{len(texts)}) -> {selected_speaker} (Seed {currentseed}):`{text}`")
|
108 |
+
complete_text += text
|
109 |
+
if quick_generation == True:
|
110 |
+
with pytorch_seed.SavedRNG(currentseed):
|
111 |
+
audio_array = generate_with_settings(text_prompt=text, voice_name=selected_speaker, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob)
|
112 |
+
currentseed = torch.random.initial_seed()
|
113 |
+
else:
|
114 |
+
full_output = use_last_generation_as_history or save_last_generation
|
115 |
+
if full_output:
|
116 |
+
full_generation, audio_array = generate_with_settings(text_prompt=text, voice_name=voice_name, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob, output_full=True)
|
117 |
+
else:
|
118 |
+
audio_array = generate_with_settings(text_prompt=text, voice_name=voice_name, semantic_temp=text_temp, coarse_temp=waveform_temp, eos_p=eos_prob)
|
119 |
+
|
120 |
+
# Noticed this in the HF Demo - convert to 16bit int -32767/32767 - most used audio format
|
121 |
+
# audio_array = (audio_array * 32767).astype(np.int16)
|
122 |
+
|
123 |
+
if len(texts) > 1:
|
124 |
+
filename = create_filename(settings.output_folder_path, currentseed, "audioclip",".wav")
|
125 |
+
save_wav(audio_array, filename)
|
126 |
+
add_id3_tag(filename, text, selected_speaker, currentseed)
|
127 |
+
|
128 |
+
if quick_generation == False and (save_last_generation == True or use_last_generation_as_history == True):
|
129 |
+
# save to npz
|
130 |
+
voice_name = create_filename(settings.output_folder_path, seed, "audioclip", ".npz")
|
131 |
+
save_as_prompt(voice_name, full_generation)
|
132 |
+
if use_last_generation_as_history:
|
133 |
+
selected_speaker = voice_name
|
134 |
+
|
135 |
+
all_parts += [audio_array]
|
136 |
+
# Add short pause between sentences
|
137 |
+
if text[-1] in "!?.\n" and i > 1:
|
138 |
+
all_parts += [silenceshort.copy()]
|
139 |
+
|
140 |
+
# save & play audio
|
141 |
+
result = create_filename(settings.output_folder_path, currentseed, "final",".wav")
|
142 |
+
save_wav(np.concatenate(all_parts), result)
|
143 |
+
# write id3 tag with text truncated to 60 chars, as a precaution...
|
144 |
+
add_id3_tag(result, complete_text, selected_speaker, currentseed)
|
145 |
+
|
146 |
+
return result
|
147 |
+
|
148 |
+
|
149 |
+
|
150 |
+
def save_wav(audio_array, filename):
|
151 |
+
write_wav(filename, SAMPLE_RATE, audio_array)
|
152 |
+
|
153 |
+
def save_voice(filename, semantic_prompt, coarse_prompt, fine_prompt):
|
154 |
+
np.savez_compressed(
|
155 |
+
filename,
|
156 |
+
semantic_prompt=semantic_prompt,
|
157 |
+
coarse_prompt=coarse_prompt,
|
158 |
+
fine_prompt=fine_prompt
|
159 |
+
)
|
160 |
+
|
161 |
+
|
162 |
+
def on_quick_gen_changed(checkbox):
|
163 |
+
if checkbox == False:
|
164 |
+
return gr.CheckboxGroup.update(visible=True)
|
165 |
+
return gr.CheckboxGroup.update(visible=False)
|
166 |
+
|
167 |
+
def delete_output_files(checkbox_state):
|
168 |
+
if checkbox_state:
|
169 |
+
outputs_folder = os.path.join(os.getcwd(), settings.output_folder_path)
|
170 |
+
if os.path.exists(outputs_folder):
|
171 |
+
purgedir(outputs_folder)
|
172 |
+
return False
|
173 |
+
|
174 |
+
|
175 |
+
# https://stackoverflow.com/a/54494779
|
176 |
+
def purgedir(parent):
|
177 |
+
for root, dirs, files in os.walk(parent):
|
178 |
+
for item in files:
|
179 |
+
# Delete subordinate files
|
180 |
+
filespec = os.path.join(root, item)
|
181 |
+
os.unlink(filespec)
|
182 |
+
for item in dirs:
|
183 |
+
# Recursively perform this operation for subordinate directories
|
184 |
+
purgedir(os.path.join(root, item))
|
185 |
+
|
186 |
+
def convert_text_to_ssml(text, selected_speaker):
|
187 |
+
return build_ssml(text, selected_speaker)
|
188 |
+
|
189 |
+
|
190 |
+
def training_prepare(selected_step, num_text_generations, progress=gr.Progress(track_tqdm=True)):
|
191 |
+
if selected_step == prepare_training_list[0]:
|
192 |
+
prepare_semantics_from_text()
|
193 |
+
else:
|
194 |
+
prepare_wavs_from_semantics()
|
195 |
+
return None
|
196 |
+
|
197 |
+
|
198 |
+
def start_training(save_model_epoch, max_epochs, progress=gr.Progress(track_tqdm=True)):
|
199 |
+
training_prepare_files("./training/data/", "./training/data/checkpoint/hubert_base_ls960.pt")
|
200 |
+
train("./training/data/", save_model_epoch, max_epochs)
|
201 |
+
return None
|
202 |
+
|
203 |
+
|
204 |
+
|
205 |
+
def apply_settings(themes, input_server_name, input_server_port, input_server_public, input_desired_len, input_max_len, input_silence_break, input_silence_speaker):
|
206 |
+
settings.selected_theme = themes
|
207 |
+
settings.server_name = input_server_name
|
208 |
+
settings.server_port = input_server_port
|
209 |
+
settings.server_share = input_server_public
|
210 |
+
settings.input_text_desired_length = input_desired_len
|
211 |
+
settings.input_text_max_length = input_max_len
|
212 |
+
settings.silence_sentence = input_silence_break
|
213 |
+
settings.silence_speaker = input_silence_speaker
|
214 |
+
settings.save()
|
215 |
+
|
216 |
+
def restart():
|
217 |
+
global restart_server
|
218 |
+
restart_server = True
|
219 |
+
|
220 |
+
|
221 |
+
def create_version_html():
|
222 |
+
python_version = ".".join([str(x) for x in sys.version_info[0:3]])
|
223 |
+
versions_html = f"""
|
224 |
+
python: <span title="{sys.version}">{python_version}</span>
|
225 |
+
•
|
226 |
+
torch: {getattr(torch, '__long_version__',torch.__version__)}
|
227 |
+
•
|
228 |
+
gradio: {gr.__version__}
|
229 |
+
"""
|
230 |
+
return versions_html
|
231 |
+
|
232 |
+
|
233 |
+
|
234 |
+
logger = logging.getLogger(__name__)
|
235 |
+
APPTITLE = "Bark UI Enhanced v0.7"
|
236 |
+
|
237 |
+
|
238 |
+
autolaunch = False
|
239 |
+
|
240 |
+
if len(sys.argv) > 1:
|
241 |
+
autolaunch = "-autolaunch" in sys.argv
|
242 |
+
|
243 |
+
|
244 |
+
if torch.cuda.is_available() == False:
|
245 |
+
os.environ['BARK_FORCE_CPU'] = 'True'
|
246 |
+
logger.warning("No CUDA detected, fallback to CPU!")
|
247 |
+
|
248 |
+
print(f'smallmodels={os.environ.get("SUNO_USE_SMALL_MODELS", False)}')
|
249 |
+
print(f'enablemps={os.environ.get("SUNO_ENABLE_MPS", False)}')
|
250 |
+
print(f'offloadcpu={os.environ.get("SUNO_OFFLOAD_CPU", False)}')
|
251 |
+
print(f'forcecpu={os.environ.get("BARK_FORCE_CPU", False)}')
|
252 |
+
print(f'autolaunch={autolaunch}\n\n')
|
253 |
+
|
254 |
+
#print("Updating nltk\n")
|
255 |
+
#nltk.download('punkt')
|
256 |
+
|
257 |
+
print("Preloading Models\n")
|
258 |
+
preload_models()
|
259 |
+
|
260 |
+
available_themes = ["Default", "gradio/glass", "gradio/monochrome", "gradio/seafoam", "gradio/soft", "gstaff/xkcd", "freddyaboulton/dracula_revamped", "ysharma/steampunk"]
|
261 |
+
tokenizer_language_list = ["de","en", "pl"]
|
262 |
+
prepare_training_list = ["Step 1: Semantics from Text","Step 2: WAV from Semantics"]
|
263 |
+
|
264 |
+
seed = -1
|
265 |
+
server_name = settings.server_name
|
266 |
+
if len(server_name) < 1:
|
267 |
+
server_name = None
|
268 |
+
server_port = settings.server_port
|
269 |
+
if server_port <= 0:
|
270 |
+
server_port = None
|
271 |
+
global run_server
|
272 |
+
global restart_server
|
273 |
+
|
274 |
+
run_server = True
|
275 |
+
|
276 |
+
while run_server:
|
277 |
+
# Collect all existing speakers/voices in dir
|
278 |
+
speakers_list = []
|
279 |
+
|
280 |
+
for root, dirs, files in os.walk("./bark/assets/prompts"):
|
281 |
+
for file in files:
|
282 |
+
if file.endswith(".npz"):
|
283 |
+
pathpart = root.replace("./bark/assets/prompts", "")
|
284 |
+
name = os.path.join(pathpart, file[:-4])
|
285 |
+
if name.startswith("/") or name.startswith("\\"):
|
286 |
+
name = name[1:]
|
287 |
+
speakers_list.append(name)
|
288 |
+
|
289 |
+
speakers_list = sorted(speakers_list, key=lambda x: x.lower())
|
290 |
+
speakers_list.insert(0, 'None')
|
291 |
+
|
292 |
+
print(f'Launching {APPTITLE} Server')
|
293 |
+
|
294 |
+
# Create Gradio Blocks
|
295 |
+
|
296 |
+
with gr.Blocks(title=f"{APPTITLE}", mode=f"{APPTITLE}", theme=settings.selected_theme) as barkgui:
|
297 |
+
with gr.Row():
|
298 |
+
with gr.Column():
|
299 |
+
gr.Markdown(f"### [{APPTITLE}](https://github.com/C0untFloyd/bark-gui)")
|
300 |
+
with gr.Column():
|
301 |
+
gr.HTML(create_version_html(), elem_id="versions")
|
302 |
+
|
303 |
+
with gr.Tab("TTS"):
|
304 |
+
with gr.Row():
|
305 |
+
with gr.Column():
|
306 |
+
placeholder = "Enter text here."
|
307 |
+
input_text = gr.Textbox(label="Input Text", lines=4, placeholder=placeholder)
|
308 |
+
with gr.Column():
|
309 |
+
seedcomponent = gr.Number(label="Seed (default -1 = Random)", precision=0, value=-1)
|
310 |
+
batchcount = gr.Number(label="Batch count", precision=0, value=1)
|
311 |
+
with gr.Row():
|
312 |
+
with gr.Column():
|
313 |
+
examples = [
|
314 |
+
"Special meanings: [laughter] [laughs] [sighs] [music] [gasps] [clears throat] MAN: WOMAN:",
|
315 |
+
"♪ Never gonna make you cry, never gonna say goodbye, never gonna tell a lie and hurt you ♪",
|
316 |
+
"And now — a picture of a larch [laughter]",
|
317 |
+
"""
|
318 |
+
WOMAN: I would like an oatmilk latte please.
|
319 |
+
MAN: Wow, that's expensive!
|
320 |
+
""",
|
321 |
+
"""<?xml version="1.0"?>
|
322 |
+
<speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis"
|
323 |
+
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
|
324 |
+
xsi:schemaLocation="http://www.w3.org/2001/10/synthesis
|
325 |
+
http://www.w3.org/TR/speech-synthesis/synthesis.xsd"
|
326 |
+
xml:lang="en-US">
|
327 |
+
<voice name="/v2/en_speaker_9">Look at that drunk guy!</voice>
|
328 |
+
<voice name="/v2/en_speaker_3">Who is he?</voice>
|
329 |
+
<voice name="/v2/en_speaker_9">WOMAN: [clears throat] 10 years ago, he proposed me and I rejected him.</voice>
|
330 |
+
<voice name="/v2/en_speaker_3">Oh my God [laughs] he is still celebrating</voice>
|
331 |
+
</speak>"""
|
332 |
+
]
|
333 |
+
examples = gr.Examples(examples=examples, inputs=input_text)
|
334 |
+
with gr.Column():
|
335 |
+
convert_to_ssml_button = gr.Button("Convert Input Text to SSML")
|
336 |
+
|
337 |
+
with gr.Row():
|
338 |
+
with gr.Column():
|
339 |
+
gr.Markdown("[Voice Prompt Library](https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c)")
|
340 |
+
speaker = gr.Dropdown(speakers_list, value=speakers_list[0], label="Voice")
|
341 |
+
with gr.Column():
|
342 |
+
text_temp = gr.Slider(0.1, 1.0, value=0.6, label="Generation Temperature", info="1.0 more diverse, 0.1 more conservative")
|
343 |
+
waveform_temp = gr.Slider(0.1, 1.0, value=0.7, label="Waveform temperature", info="1.0 more diverse, 0.1 more conservative")
|
344 |
+
|
345 |
+
with gr.Row():
|
346 |
+
with gr.Column():
|
347 |
+
quick_gen_checkbox = gr.Checkbox(label="Quick Generation", value=True)
|
348 |
+
settings_checkboxes = ["Use last generation as history", "Save generation as Voice"]
|
349 |
+
complete_settings = gr.CheckboxGroup(choices=settings_checkboxes, value=settings_checkboxes, label="Detailed Generation Settings", type="value", interactive=True, visible=False)
|
350 |
+
with gr.Column():
|
351 |
+
eos_prob = gr.Slider(0.0, 0.5, value=0.05, label="End of sentence probability")
|
352 |
+
|
353 |
+
with gr.Row():
|
354 |
+
with gr.Column():
|
355 |
+
tts_create_button = gr.Button("Generate")
|
356 |
+
with gr.Column():
|
357 |
+
hidden_checkbox = gr.Checkbox(visible=False)
|
358 |
+
button_stop_generation = gr.Button("Stop generation")
|
359 |
+
with gr.Row():
|
360 |
+
output_audio = gr.Audio(label="Generated Audio", type="filepath")
|
361 |
+
|
362 |
+
with gr.Tab("Swap Voice"):
|
363 |
+
with gr.Row():
|
364 |
+
swap_audio_filename = gr.Audio(label="Input audio.wav to swap voice", source="upload", type="filepath")
|
365 |
+
with gr.Row():
|
366 |
+
with gr.Column():
|
367 |
+
swap_tokenizer_lang = gr.Dropdown(tokenizer_language_list, label="Base Language Tokenizer", value=tokenizer_language_list[1])
|
368 |
+
swap_seed = gr.Number(label="Seed (default -1 = Random)", precision=0, value=-1)
|
369 |
+
with gr.Column():
|
370 |
+
speaker_swap = gr.Dropdown(speakers_list, value=speakers_list[0], label="Voice")
|
371 |
+
swap_batchcount = gr.Number(label="Batch count", precision=0, value=1)
|
372 |
+
with gr.Row():
|
373 |
+
swap_voice_button = gr.Button("Swap Voice")
|
374 |
+
with gr.Row():
|
375 |
+
output_swap = gr.Audio(label="Generated Audio", type="filepath")
|
376 |
+
|
377 |
+
with gr.Tab("Clone Voice"):
|
378 |
+
with gr.Row():
|
379 |
+
input_audio_filename = gr.Audio(label="Input audio.wav", source="upload", type="filepath")
|
380 |
+
#transcription_text = gr.Textbox(label="Transcription Text", lines=1, placeholder="Enter Text of your Audio Sample here...")
|
381 |
+
with gr.Row():
|
382 |
+
with gr.Column():
|
383 |
+
initialname = "./bark/assets/prompts/custom/MeMyselfAndI"
|
384 |
+
output_voice = gr.Textbox(label="Filename of trained Voice", lines=1, placeholder=initialname, value=initialname)
|
385 |
+
with gr.Column():
|
386 |
+
tokenizerlang = gr.Dropdown(tokenizer_language_list, label="Base Language Tokenizer", value=tokenizer_language_list[1])
|
387 |
+
with gr.Row():
|
388 |
+
clone_voice_button = gr.Button("Create Voice")
|
389 |
+
with gr.Row():
|
390 |
+
dummy = gr.Text(label="Progress")
|
391 |
+
|
392 |
+
with gr.Tab("Training Data Prepare"):
|
393 |
+
gr.Markdown("This tab should be used to generate the training dataset. For Step 1 put some books into the inputtext folder in UTF-8 Text Format.")
|
394 |
+
prepare_semantics_number = gr.Number(label="Number of semantics to create", precision=0, value=3079)
|
395 |
+
prepare_dropdown = gr.Dropdown(prepare_training_list, value=prepare_training_list[0], label="Prepare")
|
396 |
+
training_prepare_button = gr.Button("Generate")
|
397 |
+
dummytrd = gr.Text(label="Progress")
|
398 |
+
|
399 |
+
with gr.Tab("Training"):
|
400 |
+
with gr.Row():
|
401 |
+
gr.Markdown("This tab is used to train the actual model (language).")
|
402 |
+
with gr.Row():
|
403 |
+
with gr.Column():
|
404 |
+
save_model_epoch = gr.Number(label="Auto-save model after number of epochs", precision=0, value=1)
|
405 |
+
with gr.Column():
|
406 |
+
max_epochs = gr.Number(label="Train for number of epochs", precision=0, value=6)
|
407 |
+
with gr.Row():
|
408 |
+
with gr.Column():
|
409 |
+
allowed_chars = ' abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!@#$%^&*()-_+=\"\':;[]{}/<>,.`~'
|
410 |
+
allowedcharsfilter = gr.Textbox(label="Allowed chars for text input", lines=1, value=allowed_chars)
|
411 |
+
with gr.Column():
|
412 |
+
train_button = gr.Button("Start Training")
|
413 |
+
with gr.Row():
|
414 |
+
dummytrain = gr.Text(label="Progress")
|
415 |
+
|
416 |
+
|
417 |
+
with gr.Tab("Settings"):
|
418 |
+
with gr.Row():
|
419 |
+
themes = gr.Dropdown(available_themes, label="Theme", info="Change needs complete restart", value=settings.selected_theme)
|
420 |
+
with gr.Row():
|
421 |
+
input_server_name = gr.Textbox(label="Server Name", lines=1, info="Leave blank to run locally", value=settings.server_name)
|
422 |
+
input_server_port = gr.Number(label="Server Port", precision=0, info="Leave at 0 to use default", value=settings.server_port)
|
423 |
+
share_checkbox = gr.Checkbox(label="Public Server", value=settings.server_share)
|
424 |
+
with gr.Row():
|
425 |
+
input_desired_len = gr.Slider(100, 150, value=settings.input_text_desired_length, label="Desired Input Text Length", info="Ideal length to split input sentences")
|
426 |
+
input_max_len = gr.Slider(150, 256, value=settings.input_text_max_length, label="Max Input Text Length", info="Maximum Input Text Length")
|
427 |
+
with gr.Row():
|
428 |
+
input_silence_break = gr.Slider(1, 1000, value=settings.silence_sentence, label="Sentence Pause Time (ms)", info="Silence between sentences in milliseconds")
|
429 |
+
input_silence_speakers = gr.Slider(1, 5000, value=settings.silence_speakers, label="Speaker Pause Time (ms)", info="Silence between different speakers in milliseconds")
|
430 |
+
|
431 |
+
with gr.Row():
|
432 |
+
button_apply_settings = gr.Button("Apply Settings")
|
433 |
+
button_apply_restart = gr.Button("Restart Server")
|
434 |
+
button_delete_files = gr.Button("Clear output folder")
|
435 |
+
|
436 |
+
quick_gen_checkbox.change(fn=on_quick_gen_changed, inputs=quick_gen_checkbox, outputs=complete_settings)
|
437 |
+
convert_to_ssml_button.click(convert_text_to_ssml, inputs=[input_text, speaker],outputs=input_text)
|
438 |
+
gen_click = tts_create_button.click(generate_text_to_speech, inputs=[input_text, speaker, text_temp, waveform_temp, eos_prob, quick_gen_checkbox, complete_settings, seedcomponent, batchcount],outputs=output_audio)
|
439 |
+
button_stop_generation.click(fn=None, inputs=None, outputs=None, cancels=[gen_click])
|
440 |
+
# Javascript hack to display modal confirmation dialog
|
441 |
+
js = "(x) => confirm('Are you sure? This will remove all files from output folder')"
|
442 |
+
button_delete_files.click(None, None, hidden_checkbox, _js=js)
|
443 |
+
hidden_checkbox.change(delete_output_files, [hidden_checkbox], [hidden_checkbox])
|
444 |
+
|
445 |
+
swap_voice_button.click(swap_voice_from_audio, inputs=[swap_audio_filename, speaker_swap, swap_tokenizer_lang, swap_seed, swap_batchcount], outputs=output_swap)
|
446 |
+
clone_voice_button.click(clone_voice, inputs=[input_audio_filename, output_voice], outputs=dummy)
|
447 |
+
training_prepare_button.click(training_prepare, inputs=[prepare_dropdown, prepare_semantics_number], outputs=dummytrd)
|
448 |
+
train_button.click(start_training, inputs=[save_model_epoch, max_epochs], outputs=dummytrain)
|
449 |
+
button_apply_settings.click(apply_settings, inputs=[themes, input_server_name, input_server_port, share_checkbox, input_desired_len, input_max_len, input_silence_break, input_silence_speakers])
|
450 |
+
button_apply_restart.click(restart)
|
451 |
+
|
452 |
+
restart_server = False
|
453 |
+
try:
|
454 |
+
barkgui.queue().launch(inbrowser=autolaunch, server_name=server_name, server_port=server_port, share=settings.server_share, prevent_thread_lock=True)
|
455 |
+
except:
|
456 |
+
restart_server = True
|
457 |
+
run_server = False
|
458 |
+
try:
|
459 |
+
while restart_server == False:
|
460 |
+
time.sleep(1.0)
|
461 |
+
except (KeyboardInterrupt, OSError):
|
462 |
+
print("Keyboard interruption in main thread... closing server.")
|
463 |
+
run_server = False
|
464 |
+
barkgui.close()
|
465 |
+
|
466 |
+
|
467 |
+
|
468 |
+
|