explain
Browse files- app.py +7 -5
- xgb/error_data.png +0 -0
- xgb/error_feature.png +0 -0
- xgb/error_instance.png +0 -0
- xgb/error_record.png +0 -0
app.py
CHANGED
@@ -232,9 +232,10 @@ Full dataset at the bottom of this tab
|
|
232 |
|
233 |
Explain by Context
|
234 |
===============
|
235 |
-
Below are
|
236 |
|
237 |
-
Sometime it is useful to switch to credit healthy background, to explain why a certain person default by changing the baseline E[f(x) | credit healthy] with interventional feature perturbation
|
|
|
238 |
|
239 |
Explain by Dataset
|
240 |
===============
|
@@ -281,19 +282,20 @@ Explain by Top 5 Error Example
|
|
281 |
![Top 5 Error Data](file=./xgb/error_data.png)
|
282 |
|
283 |
**Top Features for Errors:**
|
284 |
-
- **
|
285 |
|
286 |
![Error Record](file=./xgb/error_record.png)
|
287 |
**Top 1 Error:**
|
288 |
- Notably, young age has a negative impact on pricing (top 1 error).
|
|
|
289 |
|
290 |
![Error Feature](file=./xgb/error_feature.png)
|
291 |
**Insight from Errors:**
|
292 |
-
- Further distance from the subway might positively impact pricing for the top 5 errors
|
293 |
|
294 |
![Error Instance](file=./xgb/error_instance.png)
|
295 |
**Error Instances:**
|
296 |
-
- Younger age negatively impacts price, while older age positively impacts
|
297 |
|
298 |
ML Observability
|
299 |
===============
|
|
|
232 |
|
233 |
Explain by Context
|
234 |
===============
|
235 |
+
- Below are explanation in typical background E[f(x)]
|
236 |
|
237 |
+
- Sometime it is useful to switch to credit healthy background, to explain why a certain person default by changing the baseline E[f(x) | credit healthy] with interventional feature perturbation
|
238 |
+
https://arxiv.org/pdf/2006.16234.pdf
|
239 |
|
240 |
Explain by Dataset
|
241 |
===============
|
|
|
282 |
![Top 5 Error Data](file=./xgb/error_data.png)
|
283 |
|
284 |
**Top Features for Errors:**
|
285 |
+
- **dist_subway, age** stands out as the top feature impacting the top 5 errors negatively (for young ages).
|
286 |
|
287 |
![Error Record](file=./xgb/error_record.png)
|
288 |
**Top 1 Error:**
|
289 |
- Notably, young age has a negative impact on pricing (top 1 error).
|
290 |
+
- lat has positive impact
|
291 |
|
292 |
![Error Feature](file=./xgb/error_feature.png)
|
293 |
**Insight from Errors:**
|
294 |
+
- Further distance from the subway might positively impact pricing for the top 5 errors at around 700
|
295 |
|
296 |
![Error Instance](file=./xgb/error_instance.png)
|
297 |
**Error Instances:**
|
298 |
+
- Younger age negatively impacts price, while older age positively impacts price for the top 5 errors.
|
299 |
|
300 |
ML Observability
|
301 |
===============
|
xgb/error_data.png
CHANGED
![]() |
![]() |
xgb/error_feature.png
CHANGED
![]() |
![]() |
xgb/error_instance.png
CHANGED
![]() |
![]() |
xgb/error_record.png
CHANGED
![]() |
![]() |