keremberke commited on
Commit
b464d0d
·
1 Parent(s): 651391d

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -14
app.py CHANGED
@@ -107,7 +107,7 @@ def predict(image, model_id, threshold):
107
 
108
 
109
  with gr.Blocks() as demo:
110
- gr.Markdown("""# <p align='center'><img width='500px' src='https://user-images.githubusercontent.com/34196005/215836968-fb54e066-a524-4caf-b469-92bbaa96f921.gif' /></p>
111
  <p style='text-align: center'>
112
  <br> <a href='https://yolov8.xyz' target='_blank'>project website</a> | <a href='https://github.com/keremberke/awesome-yolov8-models' target='_blank'>project github</a>
113
  </p>
@@ -128,20 +128,22 @@ with gr.Blocks() as demo:
128
  with gr.Row():
129
  half_ind = int(len(det_examples) / 2)
130
  with gr.Column():
131
- detect_examples = gr.Examples(
132
- det_examples[:half_ind],
133
  inputs=[detect_input, detect_model_id, detect_threshold],
134
  outputs=detect_output,
135
  fn=predict,
136
  cache_examples=False,
 
137
  )
138
  with gr.Column():
139
- detect_examples = gr.Examples(
140
  det_examples[:half_ind],
141
  inputs=[detect_input, detect_model_id, detect_threshold],
142
  outputs=detect_output,
143
  fn=predict,
144
  cache_examples=False,
 
145
  )
146
  with gr.Tab("Segmentation"):
147
  with gr.Row():
@@ -153,22 +155,24 @@ with gr.Blocks() as demo:
153
  with gr.Column():
154
  segment_output = gr.Image(label="Predictions:", interactive=False)
155
  with gr.Row():
156
- half_ind = int(len(det_examples) / 2)
157
  with gr.Column():
158
- segment_examples = gr.Examples(
159
- seg_examples[:half_ind],
160
  inputs=[segment_input, segment_model_id, segment_threshold],
161
  outputs=segment_output,
162
  fn=predict,
163
  cache_examples=False,
 
164
  )
165
  with gr.Column():
166
- segment_examples = gr.Examples(
167
  seg_examples[:half_ind],
168
  inputs=[segment_input, segment_model_id, segment_threshold],
169
  outputs=segment_output,
170
  fn=predict,
171
  cache_examples=False,
 
172
  )
173
  with gr.Tab("Classification"):
174
  with gr.Row():
@@ -182,32 +186,34 @@ with gr.Blocks() as demo:
182
  label="Predictions:", show_label=True, num_top_classes=5
183
  )
184
  with gr.Row():
185
- half_ind = int(len(det_examples) / 2)
186
  with gr.Column():
187
- classify_examples = gr.Examples(
188
  cls_examples[half_ind:],
189
  inputs=[classify_input, classify_model_id, classify_threshold],
190
  outputs=classify_output,
191
  fn=predict,
192
  cache_examples=False,
 
193
  )
194
  with gr.Column():
195
- classify_examples = gr.Examples(
196
  cls_examples[:half_ind],
197
  inputs=[classify_input, classify_model_id, classify_threshold],
198
  outputs=classify_output,
199
  fn=predict,
200
  cache_examples=False,
 
201
  )
202
 
203
  detect_button.click(
204
- predict, inputs=[detect_input, detect_model_id, detect_threshold], outputs=detect_output
205
  )
206
  segment_button.click(
207
- predict, inputs=[segment_input, segment_model_id, segment_threshold], outputs=segment_output
208
  )
209
  classify_button.click(
210
- predict, inputs=[classify_input, classify_model_id, classify_threshold], outputs=classify_output
211
  )
212
 
213
  demo.launch(server_port=8080)
 
107
 
108
 
109
  with gr.Blocks() as demo:
110
+ gr.Markdown("""# <p align='center'><a href="https://github.com/keremberke/awesome-yolov8-models" target='_blank'><img width='500px' src='https://user-images.githubusercontent.com/34196005/215836968-fb54e066-a524-4caf-b469-92bbaa96f921.gif' /></a></p>
111
  <p style='text-align: center'>
112
  <br> <a href='https://yolov8.xyz' target='_blank'>project website</a> | <a href='https://github.com/keremberke/awesome-yolov8-models' target='_blank'>project github</a>
113
  </p>
 
128
  with gr.Row():
129
  half_ind = int(len(det_examples) / 2)
130
  with gr.Column():
131
+ gr.Examples(
132
+ det_examples[half_ind:],
133
  inputs=[detect_input, detect_model_id, detect_threshold],
134
  outputs=detect_output,
135
  fn=predict,
136
  cache_examples=False,
137
+ run_on_click=True,
138
  )
139
  with gr.Column():
140
+ gr.Examples(
141
  det_examples[:half_ind],
142
  inputs=[detect_input, detect_model_id, detect_threshold],
143
  outputs=detect_output,
144
  fn=predict,
145
  cache_examples=False,
146
+ run_on_click=True,
147
  )
148
  with gr.Tab("Segmentation"):
149
  with gr.Row():
 
155
  with gr.Column():
156
  segment_output = gr.Image(label="Predictions:", interactive=False)
157
  with gr.Row():
158
+ half_ind = int(len(seg_examples) / 2)
159
  with gr.Column():
160
+ gr.Examples(
161
+ seg_examples[half_ind:],
162
  inputs=[segment_input, segment_model_id, segment_threshold],
163
  outputs=segment_output,
164
  fn=predict,
165
  cache_examples=False,
166
+ run_on_click=True,
167
  )
168
  with gr.Column():
169
+ gr.Examples(
170
  seg_examples[:half_ind],
171
  inputs=[segment_input, segment_model_id, segment_threshold],
172
  outputs=segment_output,
173
  fn=predict,
174
  cache_examples=False,
175
+ run_on_click=True,
176
  )
177
  with gr.Tab("Classification"):
178
  with gr.Row():
 
186
  label="Predictions:", show_label=True, num_top_classes=5
187
  )
188
  with gr.Row():
189
+ half_ind = int(len(cls_examples) / 2)
190
  with gr.Column():
191
+ gr.Examples(
192
  cls_examples[half_ind:],
193
  inputs=[classify_input, classify_model_id, classify_threshold],
194
  outputs=classify_output,
195
  fn=predict,
196
  cache_examples=False,
197
+ run_on_click=True,
198
  )
199
  with gr.Column():
200
+ gr.Examples(
201
  cls_examples[:half_ind],
202
  inputs=[classify_input, classify_model_id, classify_threshold],
203
  outputs=classify_output,
204
  fn=predict,
205
  cache_examples=False,
206
+ run_on_click=True,
207
  )
208
 
209
  detect_button.click(
210
+ predict, inputs=[detect_input, detect_model_id, detect_threshold], outputs=detect_output, api_name="detect"
211
  )
212
  segment_button.click(
213
+ predict, inputs=[segment_input, segment_model_id, segment_threshold], outputs=segment_output, api_name="segment"
214
  )
215
  classify_button.click(
216
+ predict, inputs=[classify_input, classify_model_id, classify_threshold], outputs=classify_output, api_name="classify"
217
  )
218
 
219
  demo.launch(server_port=8080)