Spaces:
Runtime error
Runtime error
keremberke
commited on
Commit
·
b464d0d
1
Parent(s):
651391d
Upload app.py
Browse files
app.py
CHANGED
@@ -107,7 +107,7 @@ def predict(image, model_id, threshold):
|
|
107 |
|
108 |
|
109 |
with gr.Blocks() as demo:
|
110 |
-
gr.Markdown("""# <p align='center'><img width='500px' src='https://user-images.githubusercontent.com/34196005/215836968-fb54e066-a524-4caf-b469-92bbaa96f921.gif' /></p>
|
111 |
<p style='text-align: center'>
|
112 |
<br> <a href='https://yolov8.xyz' target='_blank'>project website</a> | <a href='https://github.com/keremberke/awesome-yolov8-models' target='_blank'>project github</a>
|
113 |
</p>
|
@@ -128,20 +128,22 @@ with gr.Blocks() as demo:
|
|
128 |
with gr.Row():
|
129 |
half_ind = int(len(det_examples) / 2)
|
130 |
with gr.Column():
|
131 |
-
|
132 |
-
det_examples[:
|
133 |
inputs=[detect_input, detect_model_id, detect_threshold],
|
134 |
outputs=detect_output,
|
135 |
fn=predict,
|
136 |
cache_examples=False,
|
|
|
137 |
)
|
138 |
with gr.Column():
|
139 |
-
|
140 |
det_examples[:half_ind],
|
141 |
inputs=[detect_input, detect_model_id, detect_threshold],
|
142 |
outputs=detect_output,
|
143 |
fn=predict,
|
144 |
cache_examples=False,
|
|
|
145 |
)
|
146 |
with gr.Tab("Segmentation"):
|
147 |
with gr.Row():
|
@@ -153,22 +155,24 @@ with gr.Blocks() as demo:
|
|
153 |
with gr.Column():
|
154 |
segment_output = gr.Image(label="Predictions:", interactive=False)
|
155 |
with gr.Row():
|
156 |
-
half_ind = int(len(
|
157 |
with gr.Column():
|
158 |
-
|
159 |
-
seg_examples[:
|
160 |
inputs=[segment_input, segment_model_id, segment_threshold],
|
161 |
outputs=segment_output,
|
162 |
fn=predict,
|
163 |
cache_examples=False,
|
|
|
164 |
)
|
165 |
with gr.Column():
|
166 |
-
|
167 |
seg_examples[:half_ind],
|
168 |
inputs=[segment_input, segment_model_id, segment_threshold],
|
169 |
outputs=segment_output,
|
170 |
fn=predict,
|
171 |
cache_examples=False,
|
|
|
172 |
)
|
173 |
with gr.Tab("Classification"):
|
174 |
with gr.Row():
|
@@ -182,32 +186,34 @@ with gr.Blocks() as demo:
|
|
182 |
label="Predictions:", show_label=True, num_top_classes=5
|
183 |
)
|
184 |
with gr.Row():
|
185 |
-
half_ind = int(len(
|
186 |
with gr.Column():
|
187 |
-
|
188 |
cls_examples[half_ind:],
|
189 |
inputs=[classify_input, classify_model_id, classify_threshold],
|
190 |
outputs=classify_output,
|
191 |
fn=predict,
|
192 |
cache_examples=False,
|
|
|
193 |
)
|
194 |
with gr.Column():
|
195 |
-
|
196 |
cls_examples[:half_ind],
|
197 |
inputs=[classify_input, classify_model_id, classify_threshold],
|
198 |
outputs=classify_output,
|
199 |
fn=predict,
|
200 |
cache_examples=False,
|
|
|
201 |
)
|
202 |
|
203 |
detect_button.click(
|
204 |
-
predict, inputs=[detect_input, detect_model_id, detect_threshold], outputs=detect_output
|
205 |
)
|
206 |
segment_button.click(
|
207 |
-
predict, inputs=[segment_input, segment_model_id, segment_threshold], outputs=segment_output
|
208 |
)
|
209 |
classify_button.click(
|
210 |
-
predict, inputs=[classify_input, classify_model_id, classify_threshold], outputs=classify_output
|
211 |
)
|
212 |
|
213 |
demo.launch(server_port=8080)
|
|
|
107 |
|
108 |
|
109 |
with gr.Blocks() as demo:
|
110 |
+
gr.Markdown("""# <p align='center'><a href="https://github.com/keremberke/awesome-yolov8-models" target='_blank'><img width='500px' src='https://user-images.githubusercontent.com/34196005/215836968-fb54e066-a524-4caf-b469-92bbaa96f921.gif' /></a></p>
|
111 |
<p style='text-align: center'>
|
112 |
<br> <a href='https://yolov8.xyz' target='_blank'>project website</a> | <a href='https://github.com/keremberke/awesome-yolov8-models' target='_blank'>project github</a>
|
113 |
</p>
|
|
|
128 |
with gr.Row():
|
129 |
half_ind = int(len(det_examples) / 2)
|
130 |
with gr.Column():
|
131 |
+
gr.Examples(
|
132 |
+
det_examples[half_ind:],
|
133 |
inputs=[detect_input, detect_model_id, detect_threshold],
|
134 |
outputs=detect_output,
|
135 |
fn=predict,
|
136 |
cache_examples=False,
|
137 |
+
run_on_click=True,
|
138 |
)
|
139 |
with gr.Column():
|
140 |
+
gr.Examples(
|
141 |
det_examples[:half_ind],
|
142 |
inputs=[detect_input, detect_model_id, detect_threshold],
|
143 |
outputs=detect_output,
|
144 |
fn=predict,
|
145 |
cache_examples=False,
|
146 |
+
run_on_click=True,
|
147 |
)
|
148 |
with gr.Tab("Segmentation"):
|
149 |
with gr.Row():
|
|
|
155 |
with gr.Column():
|
156 |
segment_output = gr.Image(label="Predictions:", interactive=False)
|
157 |
with gr.Row():
|
158 |
+
half_ind = int(len(seg_examples) / 2)
|
159 |
with gr.Column():
|
160 |
+
gr.Examples(
|
161 |
+
seg_examples[half_ind:],
|
162 |
inputs=[segment_input, segment_model_id, segment_threshold],
|
163 |
outputs=segment_output,
|
164 |
fn=predict,
|
165 |
cache_examples=False,
|
166 |
+
run_on_click=True,
|
167 |
)
|
168 |
with gr.Column():
|
169 |
+
gr.Examples(
|
170 |
seg_examples[:half_ind],
|
171 |
inputs=[segment_input, segment_model_id, segment_threshold],
|
172 |
outputs=segment_output,
|
173 |
fn=predict,
|
174 |
cache_examples=False,
|
175 |
+
run_on_click=True,
|
176 |
)
|
177 |
with gr.Tab("Classification"):
|
178 |
with gr.Row():
|
|
|
186 |
label="Predictions:", show_label=True, num_top_classes=5
|
187 |
)
|
188 |
with gr.Row():
|
189 |
+
half_ind = int(len(cls_examples) / 2)
|
190 |
with gr.Column():
|
191 |
+
gr.Examples(
|
192 |
cls_examples[half_ind:],
|
193 |
inputs=[classify_input, classify_model_id, classify_threshold],
|
194 |
outputs=classify_output,
|
195 |
fn=predict,
|
196 |
cache_examples=False,
|
197 |
+
run_on_click=True,
|
198 |
)
|
199 |
with gr.Column():
|
200 |
+
gr.Examples(
|
201 |
cls_examples[:half_ind],
|
202 |
inputs=[classify_input, classify_model_id, classify_threshold],
|
203 |
outputs=classify_output,
|
204 |
fn=predict,
|
205 |
cache_examples=False,
|
206 |
+
run_on_click=True,
|
207 |
)
|
208 |
|
209 |
detect_button.click(
|
210 |
+
predict, inputs=[detect_input, detect_model_id, detect_threshold], outputs=detect_output, api_name="detect"
|
211 |
)
|
212 |
segment_button.click(
|
213 |
+
predict, inputs=[segment_input, segment_model_id, segment_threshold], outputs=segment_output, api_name="segment"
|
214 |
)
|
215 |
classify_button.click(
|
216 |
+
predict, inputs=[classify_input, classify_model_id, classify_threshold], outputs=classify_output, api_name="classify"
|
217 |
)
|
218 |
|
219 |
demo.launch(server_port=8080)
|