Spaces:
Build error
Build error
import os | |
os.system('pip install tensorflow') | |
os.system('pip install tensorflow_hub') | |
os.system('pip install tensorflow_text') | |
from huggingface_hub import from_pretrained_keras | |
import numpy as np | |
import pandas as pd | |
import tensorflow as tf | |
import tensorflow_hub as hub | |
import tensorflow_text as text | |
from tensorflow import keras | |
import gradio as gr | |
def make_bert_preprocessing_model(sentence_features, seq_length=128): | |
"""Returns Model mapping string features to BERT inputs. | |
Args: | |
sentence_features: A list with the names of string-valued features. | |
seq_length: An integer that defines the sequence length of BERT inputs. | |
Returns: | |
A Keras Model that can be called on a list or dict of string Tensors | |
(with the order or names, resp., given by sentence_features) and | |
returns a dict of tensors for input to BERT. | |
""" | |
input_segments = [ | |
tf.keras.layers.Input(shape=(), dtype=tf.string, name=ft) | |
for ft in sentence_features | |
] | |
# tokenize the text to word pieces | |
bert_preprocess = hub.load(bert_preprocess_path) | |
tokenizer = hub.KerasLayer(bert_preprocess.tokenize, | |
name="tokenizer") | |
segments = [tokenizer(s) for s in input_segments] | |
truncated_segments = segments | |
packer = hub.KerasLayer(bert_preprocess.bert_pack_inputs, | |
arguments=dict(seq_length=seq_length), | |
name="packer") | |
model_inputs = packer(truncated_segments) | |
return keras.Model(input_segments, model_inputs) | |
def preprocess_image(image_path, resize): | |
extension = tf.strings.split(image_path)[-1] | |
image = tf.io.read_file(image_path) | |
if extension == b"jpg": | |
image = tf.image.decode_jpeg(image, 3) | |
else: | |
image = tf.image.decode_png(image, 3) | |
image = tf.image.resize(image, resize) | |
return image | |
def preprocess_text(text_1, text_2): | |
text_1 = tf.convert_to_tensor([text_1]) | |
text_2 = tf.convert_to_tensor([text_2]) | |
output = bert_preprocess_model([text_1, text_2]) | |
output = {feature: tf.squeeze(output[feature]) for feature in bert_input_features} | |
return output | |
def preprocess_text_and_image(sample, resize): | |
image_1 = preprocess_image(sample['image_1_path'], resize) | |
image_2 = preprocess_image(sample['image_2_path'], resize) | |
text = preprocess_text(sample['text_1'], sample['text_2']) | |
return {"image_1": image_1, "image_2": image_2, "text": text} | |
def classify_info(image_1, text_1, image_2, text_2): | |
sample = dict() | |
sample['image_1_path'] = image_1 | |
sample['image_2_path'] = image_2 | |
sample['text_1'] = text_1 | |
sample['text_2'] = text_2 | |
dataframe = pd.DataFrame(sample, index=[0]) | |
ds = tf.data.Dataset.from_tensor_slices((dict(dataframe), [0])) | |
ds = ds.map(lambda x, y: (preprocess_text_and_image(x, resize), y)).cache() | |
batch_size = 1 | |
auto = tf.data.AUTOTUNE | |
ds = ds.batch(batch_size).prefetch(auto) | |
output = model.predict(ds) | |
outputs = dict() | |
outputs[labels[0]] = float(output[0][0]) | |
outputs[labels[1]] = float(output[0][1]) | |
outputs[labels[2]] = float(output[0][2]) | |
#label = np.argmax(output) | |
return outputs #labels[label] | |
model = from_pretrained_keras("keras-io/multimodal-entailment") | |
resize = (128, 128) | |
bert_input_features = ["input_word_ids", "input_type_ids", "input_mask"] | |
bert_model_path = ("https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-2_H-256_A-4/1") | |
bert_preprocess_path = "https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/3" | |
bert_preprocess_model = make_bert_preprocessing_model(['text_1', 'text_2']) | |
labels = {0: "Contradictory", 1: "Implies", 2: "No Entailment"} | |
resize = (128, 128) | |
image_1 = gr.inputs.Image(type="filepath") | |
image_2 = gr.inputs.Image(type="filepath") | |
text_1 = gr.inputs.Textbox(lines=5) | |
text_2 = gr.inputs.Textbox(lines=5) | |
examples = [['examples/image_1.png', '#IndiaFightsCorona:\n\nNearly 4.5 million beneficiaries vaccinated against #COVID19 in 19 days.\n\nIndia is the fastest country to cross landmark of vaccinating 4 million beneficiaries in merely 18 days.\n\n#StaySafe #IndiaWillWin #Unite2FightCorona https://t.co/beGDQfd06S', 'examples/image_2.jpg', '#IndiaFightsCorona:\n\nIndia has become the fastest nation to reach 4 million #COVID19 vaccinations ; it took only 18 days to administer the first 4 million #vaccines\n\n:@MoHFW_INDIA Secretary\n\n#StaySafe #IndiaWillWin #Unite2FightCorona https://t.co/9GENQlqtn3']] | |
label = gr.outputs.Label() | |
iface = gr.Interface(classify_info, | |
inputs=[image_1, text_1, image_2, text_2], outputs=label, | |
examples = examples, | |
title="Multimodal Entailment Keras", | |
description = "Model for classifying whether image and text from one scenario complements the image and text from another scenario. They can be contradictory, implied or no entailment. Example images and text from the dataset in raw form !", | |
article = "Author: <a href=\"https://huggingface.co./reichenbach\">Rishav Chandra Varma</a>") | |
iface.launch() |