from huggingface_hub import from_pretrained_keras
import numpy as np
import json
import gradio as gr
import tensorflow as tf
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
# load config
with open("image_paths.json", 'r') as f:
image_paths = json.load(f)
image_embeddings = np.load("image_embeddings.npy")
text_encoder = from_pretrained_keras("keras-io/dual-encoder-image-search")
def find_matches(image_paths, image_embeddings, queries, k=9, normalize=True):
# Get the embedding for the query.
query_embedding = text_encoder(tf.convert_to_tensor(queries))
# Normalize the query and the image embeddings.
if normalize:
image_embeddings = tf.math.l2_normalize(image_embeddings, axis=1)
query_embedding = tf.math.l2_normalize(query_embedding, axis=1)
# Compute the dot product between the query and the image embeddings.
dot_similarity = tf.matmul(query_embedding, image_embeddings, transpose_b=True)
# Retrieve top k indices.
results = tf.math.top_k(dot_similarity, k).indices.numpy()
# Return matching image paths.
return [[image_paths[idx] for idx in indices] for indices in results]
def inference(query):
matches = find_matches(image_paths, image_embeddings, [query], normalize=True)[0]
plt.figure(figsize=(20, 20))
for i in range(9):
ax = plt.subplot(3, 3, i + 1)
plt.imshow(mpimg.imread(matches[i]))
plt.axis("off")
plt.savefig("img.png")
return "img.png"
examples= ['a family standing next to the ocean on a sandy beach with a surf board',
'a group of people sitting in an audience with pen and paper',
]
gr.Interface(
fn=inference,
title="Natural language image search with a Dual Encoder",
description = "Implementation of a dual encoder model for retrieving images that match natural language queries (Note: for demo purposes, only 1k images were used as search space)",
inputs="text",
examples=examples,
outputs="image",
cache_examples=False,
article = "Author: Vu Minh Chien. Based on the keras example from Khalid Salama",
).launch(debug=True, enable_queue=True)