vumichien commited on
Commit
017d30a
·
1 Parent(s): 4575986

Create new file

Browse files
Files changed (1) hide show
  1. app.py +53 -0
app.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from huggingface_hub import from_pretrained_keras
2
+ import numpy as np
3
+ import json
4
+ import gradio as gr
5
+ import tensorflow as tf
6
+ import matplotlib.pyplot as plt
7
+ import matplotlib.image as mpimg
8
+
9
+ # load config
10
+ with open("image_paths.json", 'r') as f:
11
+ image_paths = json.load(f)
12
+ image_embeddings = np.load("image_embeddings.npy")
13
+ text_encoder = from_pretrained_keras("keras-io/dual-encoder-image-search")
14
+
15
+ def find_matches(image_paths, image_embeddings, queries, k=9, normalize=True):
16
+ # Get the embedding for the query.
17
+ query_embedding = text_encoder(tf.convert_to_tensor(queries))
18
+ # Normalize the query and the image embeddings.
19
+ if normalize:
20
+ image_embeddings = tf.math.l2_normalize(image_embeddings, axis=1)
21
+ query_embedding = tf.math.l2_normalize(query_embedding, axis=1)
22
+ # Compute the dot product between the query and the image embeddings.
23
+ dot_similarity = tf.matmul(query_embedding, image_embeddings, transpose_b=True)
24
+ # Retrieve top k indices.
25
+ results = tf.math.top_k(dot_similarity, k).indices.numpy()
26
+ # Return matching image paths.
27
+ return [[image_paths[idx] for idx in indices] for indices in results]
28
+
29
+
30
+ def inference(query):
31
+ matches = find_matches(image_paths, image_embeddings, [query], normalize=True)[0]
32
+ plt.figure(figsize=(20, 20))
33
+ for i in range(9):
34
+ ax = plt.subplot(3, 3, i + 1)
35
+ plt.imshow(mpimg.imread(matches[i]))
36
+ plt.axis("off")
37
+ plt.savefig("img.png")
38
+ return "img.png"
39
+
40
+ examples= ['a family standing next to the ocean on a sandy beach with a surf board',
41
+ 'a group of people sitting in an audience with pen and paper',
42
+ ]
43
+
44
+ gr.Interface(
45
+ fn=inference,
46
+ title="Natural language image search with a Dual Encoder",
47
+ description = "Implementation of a dual encoder model for retrieving images that match natural language queries (Note: for demo purposes, only 1k images were used as search space)",
48
+ inputs="text",
49
+ examples=examples,
50
+ outputs="image",
51
+ cache_examples=False,
52
+ article = "Author: <a href=\"https://huggingface.co/vumichien\">Vu Minh Chien</a>. Based on the keras example from <a href=\"https://keras.io/examples/nlp/nl_image_search/\">Khalid Salama</a>",
53
+ ).launch(debug=True, enable_queue=True)