Spaces:
Runtime error
Runtime error
import json | |
import numpy as np | |
import tensorflow as tf | |
from tensorflow import keras | |
from huggingface_hub import from_pretrained_keras | |
import gradio as gr | |
latent_dim = 256 | |
num_encoder_tokens = 71 | |
max_encoder_seq_length = 15 | |
num_decoder_tokens = 92 | |
max_decoder_seq_length = 59 | |
with open("input_vocab.json", "r", encoding="utf-8") as f: | |
input_token_index = json.load(f) | |
with open("target_vocab.json", "r", encoding="utf-8") as f: | |
target_token_index = json.load(f) | |
model = from_pretrained_keras("keras-io/char-lstm-seq2seq") | |
# Define sampling models | |
# Restore the model and construct the encoder and decoder. | |
encoder_inputs = model.input[0] # input_1 | |
encoder_outputs, state_h_enc, state_c_enc = model.layers[2].output # lstm_1 | |
encoder_states = [state_h_enc, state_c_enc] | |
encoder_model = keras.Model(encoder_inputs, encoder_states) | |
decoder_inputs = model.input[1] # input_2 | |
decoder_state_input_h = keras.Input(shape=(latent_dim,), name="input_3") | |
decoder_state_input_c = keras.Input(shape=(latent_dim,), name="input_4") | |
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c] | |
decoder_lstm = model.layers[3] | |
decoder_outputs, state_h_dec, state_c_dec = decoder_lstm( | |
decoder_inputs, initial_state=decoder_states_inputs | |
) | |
decoder_states = [state_h_dec, state_c_dec] | |
decoder_dense = model.layers[4] | |
decoder_outputs = decoder_dense(decoder_outputs) | |
decoder_model = keras.Model( | |
[decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states | |
) | |
# Reverse-lookup token index to decode sequences back to | |
# something readable. | |
reverse_input_char_index = dict((i, char) for char, i in input_token_index.items()) | |
reverse_target_char_index = dict((i, char) for char, i in target_token_index.items()) | |
def decode_sequence(input_seq): | |
# Encode the input as state vectors. | |
states_value = encoder_model.predict(input_seq) | |
# Generate empty target sequence of length 1. | |
target_seq = np.zeros((1, 1, num_decoder_tokens)) | |
# Populate the first character of target sequence with the start character. | |
target_seq[0, 0, target_token_index["\t"]] = 1.0 | |
# Sampling loop for a batch of sequences | |
# (to simplify, here we assume a batch of size 1). | |
stop_condition = False | |
decoded_sentence = "" | |
while not stop_condition: | |
output_tokens, h, c = decoder_model.predict([target_seq] + states_value) | |
# Sample a token | |
sampled_token_index = np.argmax(output_tokens[0, -1, :]) | |
sampled_char = reverse_target_char_index[sampled_token_index] | |
decoded_sentence += sampled_char | |
# Exit condition: either hit max length | |
# or find stop character. | |
if sampled_char == "\n" or len(decoded_sentence) > max_decoder_seq_length: | |
stop_condition = True | |
# Update the target sequence (of length 1). | |
target_seq = np.zeros((1, 1, num_decoder_tokens)) | |
target_seq[0, 0, sampled_token_index] = 1.0 | |
# Update states | |
states_value = [h, c] | |
return decoded_sentence | |
def translate(input_text): | |
if len(input_text) > max_encoder_seq_length: | |
input_text = input_text[:max_encoder_seq_length] | |
encoder_input_data = np.zeros( | |
(1, max_encoder_seq_length, num_encoder_tokens), dtype="float32" | |
) | |
for t, char in enumerate(input_text): | |
encoder_input_data[0, t, input_token_index[char]] = 1.0 | |
encoder_input_data[0, t + 1 :, input_token_index[" "]] = 1.0 | |
target_text = decode_sequence(encoder_input_data) | |
return target_text | |
input_box = gr.inputs.Textbox(type="str", label="Input Text") | |
target = gr.outputs.Textbox() | |
iface = gr.Interface( | |
translate, | |
input_box, | |
target, | |
title="Character-level recurrent sequence-to-sequence model", | |
description="Model for Translating English to French using a Character-level recurrent sequence-to-sequence trained with small data.", | |
article='Author: <a href="https://huggingface.co./anuragshas">Anurag Singh</a> . Based on the keras example from <a href="https://keras.io/examples/nlp/lstm_seq2seq//">fchollet</a>', | |
examples=["Hi.", "Wait!", "Go on."], | |
) | |
iface.launch() | |